Membrane flexibility, free fatty acids, and the onset of vascular and neurological lesions in type 2 diabetes

Rob N.M. Weijers1
1Teaching Hospital, Onze Lieve Vrouwe Gasthuis, Amsterdam, The Netherlands

Tóm tắt

Từ khóa


Tài liệu tham khảo

Lane N. The vital question: why is live the way it is? London: Profile Books; 2015.

Garrett RH, Grisham CM. Biochemistry. 2nd ed. Fort Worth: Saunders College Publishing; 1999.

Cho SI, Craven BM. Commensurate molecules in isostructural crystals of cholesteryl cis- and trans-9-hexadecenoate. J Lipid Res. 1987;28:80–6.

Abrahamsson S, Ryderstedt-Nahringbauer I. The crystal structure of the low-melting form of oleic acid. Acta Crys. 1962;15:1261–8.

PubChem Compound Database; CID=445638. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/palmitoleic_acid .

PubChem Compound Database; CID=445639. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/oleic_acid .

Kučerka N, Liu Y, Chu N, Petrache HI, Tristram-Nagle S, Nagle JF. Structure of fully hydrated fluid phase DMPC and DLPC lipid bilayers using X-ray scattering from oriented multilamellar arrays and from unilamellar vesicles. Biophys J. 2005;88:2626–37.

Nagle JF, Tristram-Nagle S. Structure of lipid bilayers. Biochim Biophys Acta. 2000;1469:159–95.

Kučerka N, Heberle FA, Pan J, Katsaras J. Structural significance of lipid diversity as studied by small angle neutron and X-ray scattering. Membranes. 2015;5:454–72.

Weijers RN. Lipid composition of cell membranes and its relevance in type 2 diabetes mellitus. Curr Diabetes Rev. 2012;8:390–400.

Baur LA, O’Conner J, Pan DA, Storlien LH. Relationships between maternal risk of insulin resistance and the child’s muscle membrane fatty acid composition. Diabetes. 1999;48:112–6.

Israelachvili NJ. The nature of van der Waals forces. Contemp Phys. 1974;15:159–78.

Nir S, Andersen M. Van der Waals interactions between cell surfaces. J Membrane Biol. 1977;31:1–18.

Salas-Burgos A, Iserovich P, Zuniga F, Vera JC, Fischbarg J. Predicting the three-dimensional structure of the human facilitative glucose transporter Glut1 by a novel evolutionary homology strategy: insights on the molecular mechanism of substrate migration, and binding sites for glucose and inhibitory molecules. Biophys J. 2004;87:2990–9.

Büldt G, Gally HU, Seelig J. Neutron diffraction studies on phosphatidylcholine model membranes. J Mol Biol. 1979;134:673–91.

Marrink SJ, Mark AL. The mechanism of vesicle fusion as revealed by molecular dynamics simulation. J Am Chem Soc. 2003;125:11144–5.

Ravoo BJ. Membrane fusion of vesicles of oligomerisable lipids. PhD Thesis, Rijksuniversiteit Groningen,1998. Available from: http://irs.ub.rug.nl/ppn/291236774 .

Dougherty RM, Galli G, Ferro-Luzzi A, Iacono JM. Lipid and phospholipid fatty acid composition of plasma, red blood cells, and platelets and how they are affected by dietary lipids: a study of normal subjects from Italy, Finland and the USA. Am J Clin Nutr. 1987;45:443–55.

Weijers RNM. Unsaturation index and type 2 diabetes: unknown, unloved. World J Meta-Anal. 2015;3:89–92.

Vossen RCRM, van Dam-Mieras MCE, Lemmens PJMR, Hornstra G, Zwaal RFA. “Membrane fatty acid composition and endothelial cell functional properties” in Fatty Acid Modification and Endothelial Cell Reactivity [Thesis], ed. RCRM. Maastricht, The Netherlands: Vossen Universitaire Pers Maastricht; 1993.

Guerci B, Kearney-Schwarz A, Böhme P, Zannad F, Drouin P. Endothelial dysfunction and type 2 diabetes [review]. Diabet Metab. 2001;27:436–47.

Georgescu A. Vascular dysfunction in diabetes: The endothelial progenitor cells as a new therapeutic strategy. World J Diabetes. 2011;15:92–7.

Carvalho C, Santos RX, Cardoso S, Correia SC, Moreira PI. Chronic hypoxia, type 2 diabetes and Alzheimer’s disease: a dangerous triad. In: Vordermark D, editor. Hypoxia: causes, types and management. New York: Nova; 2013. p. 21–34.

Neyengaard JR, Ido Y, Kilo C, Williamson JR. Interactions between hyperglycemia and hypoxia: implications for diabetic retinopathy. Diabetes. 2004;53:2931–38.

Shi X, Burkart A, Nicoloro SM, Czech MP, Straubhaar J, Corvera S. Paradoxial effect of mitochondrial respiratory chain impairment on insulin signaling and glucose transport in adipose cells. J Biol Chem. 2008;283:30658–67.

Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Science. 2005;307:384–7.

Mootha VK, Lindgren CM, Eriksson K-F, Subramanian A, Sihag S, Lehar J, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34:267–73.

Kelly DE, He J, Menshikova EV, Ritov VB. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes. 2002;51:2944–50.

Reaven GM, Hollenbeck CB, Jeng CY, Wu MS, Chen Y-DI. Measurement of plasma glucose, free fatty acid, lactate, and insulin for 24 h in patients with NIDDM. Diabetes. 1988;37:1020–4.

Gordon ES. Non-esterified fatty acids in blood of obese and lean subjects. Am J Clin Nutr. 1960;8:740–7.

Jensen MD, Haymond MW, Rizza RA, Cryer PE, Miles JM. Influence of body fat distribution on free fatty acid metabolism in obesity. J Clin Invest. 1989;83:1168–73.

Björntorp P, Bergman H, Varnauskas E. Plasma free fatty acid turnover rate in obesity. Acta Med Scand. 1969;185:351–6.

Charles MA, Eschwege E, Thibult N, Claude JR, Warnet JM, Rosselin GE, et al. The role of non-esterified fatty acids in the deterioration of glucose tolerance in Caucasian subjects: results of the Paris Prospective Study. Diabetologia. 1997;40:1101–6.

Paolisso G, Tataranni PA, Foley JE, Bogardus C, Howard BV, Ravussin E. A high concentration of fasting plasma non-esterified fatty acids is a risk factor for the development of NIDDM. Diabetologia. 1995;38:1213–7.

Hudgins LC, Hirsch J. Changes in abdominal and gluteal adipose-tissue fatty acid compositions in obese subjects after weight gain and weight loss. Am J Clin Nutr. 1991;53:1372–7.

Raclot T, Langin D, Lafontan M, Groscolas R. Selective release of human adipocyte fatty acids according to molecular structure. Biochem J. 1997;324:911–5.

Wang S, Ma A, Song S, Quan Q, Zhao X, Zheng X. Fasting serum free fatty acid composition, waist/hip ratio and insulin activity in essential hypertensive patients. Hypertens Res. 2008;31:623–32.

Gupta AK, Ravussin E, Johannsen DL, Stull AJ, Cefalu WT, Johnson WD. Endothelial dysfunction: an early cardiovascular risk marker in asymptomatic individuals with prediabetes. Brit J Med Res. 2012;2:413–23.

Koehrer P, Saab S, Berdeaux O, Isaïco R, Grégoire S, Cabaret S, et al. Erythrocyte phospholipid and polyunsaturated fatty acid composition in diabetic retinopathy. PLoS One. 2014;9:e106912.

Laws A, Hoen HM, Selby JV, Saad MF, Haffner SM, Howard BV. Differences in insulin suppression of free fatty acid levels by gender and glucose tolerance status. Relation to plasma triglyceride and apolipoprotein B concentrations. Insulin Resistance Atherosclerosis Study (IRAS) Investigators. Aterioscler Thromb Vasc Biol. 1997;17:64–71.

Cho YI, Moony MP, Cho DJ. Hemorheological disorders in diabetes mellitus [review]. J Diabetes Sci Technol. 2008;2:1130–8.

Academy of Medical Royal Colleges. Exercise: the miracle cure and the role of the doctor in promoting it. 2015. Available from: URL: http://www.aomrc.org.uk/doc_download/9821

Randall AS, Liu C-H, Chu B, Zhang Q, Dongre SA, Juusola M, et al. Speed and sensitivity of phototransduction in Drosophila depend on degree of saturation of membrane phospholipids. J Neurosci. 2015;35:2731–46.

Brenner RR. Effect of unsaturated acids on membrane structure and enzyme kinetics. Prog Lipid Res. 1984;23:69–96.

Rawicz W, Olbrich KC, McIntosh T, Needham D, Evans E. Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys J. 2000;79:328–39.

Ziegler AB, Ménagé C, Grégoire S, Garcia T, Ferveur J-F, Bretillon L. Lack of dietary polyunsaturated fatty acids causes synapse dysfunction in the drosophila visual system. PLoS One. 2015;10:e0135353.

Tamura K, Subramanian S, Kumar S. Temporal patterns of fruit fly (Drosophila) evolution revealed by mutation clocks. Mol Biol Evol. 2004;21:36–44.

Basu A, Caumo A, Bettini F, Gelisio A, Alzaid A, Cobelli C, et al. Impaired basal glucose effectiveness in NIDDM. Contribution of defects in glucose disappearance and production, measured using an optimized minimal model independent protocol. Diabetes. 1997;46:421–32.

Nagasaka S, Tokuyama K, Kusaka I, Hayashi H, Rokkaku K, Nakamura T, et al. Endogenous glucose production and glucose effectiveness in type 2 diabetic subjects derived from stable-labeled minimal model approach. Diabetes. 1999;48:1054–60.

Martin BC, Warram JH, Krolewski AS, Bergman RN, Soeldner JS, Kahn CR. Role of glucose and insulin resistance in development of type 2 diabetes mellitus: results of a 25-year follow-up study. Lancet. 1992;340:925–9.

Bluck LJ, Clapperton AT, Coward WA. 13C- and 2H labelled glucose compared for minimal model estimates of glucose metabolism in man. Clin Sci. 2005;109:513–21.

Weijers RNM. Membrane flexibility and cellular energy management in type 2 diabetes, gestational diabetes, and obesity. EMJ Diabet. 2014;2:65–72.

Roden M, Price TB, Perseghin G, Petersen KF, Rothman DL, Cline GW, et al. Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Invest. 1996;97:2859–65.

Steinberg HO, Tarshoby M, Monestel R, Hook G, Cronin J, Johnson A, et al. Elevated circulating free fatty acid levels impair endothelium-dependent vasodilation. J Clin Invest. 1997;5:1230–9.

Calles-Escandon J, Cipolla M. Diabetes and endothelial dysfunction: a clinical perspective. Endocr Rev. 2001;22:36–52.

Sieber J, Jehle AW. Free fatty acids and their metabolism affect function and survival of podocytes. Front Endocrinol. 2014;5:186.

Weil EJ, Lemley KV, Mason CC, Yee B, Jones LI, Blouch K, et al. Podocyte detachment and reduced glomerular capillary endothelial fenestration promote kidney disease in type 2 diabetic nephropathy. Kidney Int. 2012;82:1010–7.

Stitt-Cavanagh E, MacLeod L, Kennedy C. The podocyte in diabetic kidney disease. ScientificWorldJournal. 2009;9:1127–39.

Eriksson KF, Lindgärde F. Prevention of type 2 (non-insulin-dependent) diabetes mellitus by diet and physical exercise. The 6-year Malmö feasibility study. Diabetologia. 1991;34:891–8.

Cunard R, Sharma K. The endoplasmic reticulum stress response and diabetic kidney disease. Am J Physiol Renal Physiol. 2011;300:F1054–61.

Sieber J, Lindenmeyer MT, Kampe K, Campbell KN, Cohen CD, Hopfer H, et al. Regulation of podocyte survival and endoplasmic reticulum stress by fatty acids. Am J Physiol Renal Physiol. 2010;299:F821–9.

Lennon R, Pons D, Sabin MA, Wei C, Shield JP, Coward RJ, et al. Saturated fatty acids induce insulin resistance in human podocytes: implications for diabetic nephropathy. Nephrol Dial Transplant. 2009;24:3288–96.

Ohara-Imaizumi M, Nishiwaki C, Nakamichi Y, Kikuta T, Nagai S, Nagamatsu S. Correlation of syntaxin-1 and SNAP-25 clusters with docking and fusion of insulin granules analysed by total internal reflexion fluorescence microscopy. Diabetologia. 2004;47:2200–7.

Nagamatsu S, Ohara-Imaizumi M, Nakamichi Y, Kikuta T, Nishiwaki C. Imaging docking and fusion of insulin granules induced by antidiabetes agents: sulfonylurea and glinide drugs preferentially mediate the fusion of newcomer, but not previously docked, insulin granules. Diabetes. 2006;55:2819–25.

Guillausseau PJ, Meas T, Virally M, Laloi-Michelin M, Médeau V, Kevorkian JP. Abnormalities in insulin secretion in type 2 diabetes mellitus. Diabetes Metab. 2008;34 Suppl 2:S43–48.

Ratzmann KP, Schulz B, Heinke P, Michaelis D. Quantitative and qualitative changes in the early insulin response to glucose in subjects with impaired carbohydrate tolerance. Diabetes Care. 1981;4:85–91.

Iozzo P, Turpeinen AK, Takala T, Oikonen V, Bergman J, Grönroos T, et al. Defective liver disposal of free fatty acids in patients with impaired glucose tolerance. J Clin Endocrinol Metab. 2004;89:3496–502.

Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2diabetes. N Engl J Med. 2004;350:664–71.