Membrane destabilization induced by the human immunodeficiency virus type-1 fusion peptide

Letters in Peptide Science - Tập 4 - Trang 365-369 - 1997
José L. Nieva1, Félix M. Goñi1, Arturo Muga1, Shlomo Nir2, Francisca Pereira1
1Department of Biochemistry (Grupo de Biomembranas, Unidad Asociada al CSIC), University of the Basque Country, Bilbao, Spain
2Seagram Center for Soil and Water Sciences, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel

Tóm tắt

The human immunodeficiency virus type-1 (HIV-1) fusionpeptide, corresponding to a sequence of 23 amino acidresidues at the N-terminus of the spike transmembranesubunit gp41, has the capacity to destabilizenegatively charged and neutral large unilamellarvesicles, representing, respectively, the acidic andthe neutral fraction of the plasma membrane lipids ofviral target cells. As revealed by infraredspectroscopy, the peptide associated with the vesiclesmay exist in different conformations. In negativelycharged membranes the structure is mainly anα-helix, while in Ca2+-neutralizednegatively charged membranes the conformation switchesto a predominantly extended conformation. In membranescomposed of zwitterionic phospholipids andcholesterol, the peptide also adopts a predominantextended structure. The α-helical structurepermeabilizes negatively charged vesicles but does notinduce membrane fusion. The peptide in β-typeconformation, on the other hand, permeabilizes neutralmembranes and triggers fusion. As seen by31P NMR, the latter structure also exhibits thecapacity to alter the lamellar organization of the membrane.

Tài liệu tham khảo

White, J., Annu. Rev. Physiol., 52 (1990) 675. Gallaher, W.R., Cell, 50 (1987) 327. Moore, J.P., Bradford, A.J., Weiss, R. and Sattentau, Q., In Bentz, J. (Ed.) Viral Fusion Mechanisms, CRC Press, Boca Raton, FL, U.S.A., 1993, pp. 233–289. Aloia, R.C., Tian, H.R. and Jensen, F.C., Proc. Natl. Acad. Sci. USA, 90 (1993) 5181. Hope, M.J., Bally, M.B., Webb, G. and Cullis, P.R., Biochim. Biophys. Acta, 812 (1985) 55. Bottcher, C.S.F., Van Gent, C.M. and Fries, C., Anal. Chim. Acta, 24 (1961) 203. Nieva, J.L., Nir, S., Muga, A., Goñi, F.M. and Wilschut, J., Biochemistry, 33 (1994) 3201. Arrondo, J.L.R., Muga, A., Castresana, J., Bernabeu, C. and Goñi, F.M., FEBS Lett., 252 (1989) 118. Struck, D.K., Hoekstra, D. and Pagano, R.E., Biochemistry, 20 (1981) 4093. Ellens, H., Bentz, J. and Szoka, F.C., Biochemistry, 24 (1985) 3099. Seelig, J., Biochim. Biophys. Acta, 545 (1978) 105. Nieva, J.L., Alonso, A., Basáñez, G., Goñi, F.M., Gulik, A., Vargas, R. and Luzzati, V., FEBS Lett., 368 (1995) 143. Chernomordik, L. and Zimmerberg, J., Curr. Opin. Struct. Biol., 5 (1995) 541. Nir, S., B entz, J., Wilschut, J. and Duzgunes, N., Prog. Surface Sci., 13 (1983) 1.