MemEFS: A network-aware elastic in-memory runtime distributed file system
Tài liệu tham khảo
Jacob, 2009, Montage: a grid portal and software toolkit for science-grade astronomical image mosaicking, Int. J. Comput. Sci. Eng., 4, 73
Altschul, 1990, Basic local alignment search tool, J. Mol. Biol., 215, 403, 10.1016/S0022-2836(05)80360-2
Gropp, 1999
Zhang, 2013, Parallelizing the execution of sequential scripts
Uta, 2016, Overcoming data locality: An in-memory runtime file system with symmetrical data distribution, Future Gener. Comput. Syst., 54, 144, 10.1016/j.future.2015.01.013
A. Uta, A. Sandu, T. Kielmann, MemFS: an In-memory runtime file system with symmetrical data distribution, in: IEEE Cluster, 2014, pp. 272–273 (poster paper).
Uta, 2015, Scalable in-memory computing, 805
Hey, 2009
Schad, 2010, Runtime measurements in the cloud: observing, analyzing, and reducing variance, Proc. VLDB Endow., 3, 460, 10.14778/1920841.1920902
Ballani, 2011, Towards predictable datacenter networks, 242
Kandula, 2009, The nature of data center traffic: measurements & analysis, 202
Benson, 2010, Network traffic characteristics of data centers in the wild, 267
Uta, 2015, MemEFS: an elastic in-memory runtime file system for escience applications, 465
M. Szeredi, et al. FUSE: Filesystem in userspace. http://fuse.sourceforge.net/.
B. Aker, Libmemcached, 2016. http://libmemcached.org/libMemcached.html.
Fitzpatrick, 2004, Distributed caching with memcached, Linux J., 2004, 5
Deelman, 2015, Pegasus: a workflow management system for science automation, J. Future Gener. Comput. Syst., 10.1016/j.future.2014.10.008
Karger, 1997, Consistent hashing and random trees: Distributed caching protocols for relieving hot spots on the world wide web, 654
xxhash, 2016. https://code.google.com/p/xxhash/.
D. Eastlake, P. Jones, Us secure hash algorithm 1 (sha1), 2001.
R. Rivest, The md5 message-digest algorithm, 1992.
Godfrey, 2005, Heterogeneity and load balance in distributed hash tables, 596
Stoica, 2001, Chord: A scalable peer-to-peer lookup service for internet applications, 149
Apache Libcloud, 2016. https://libcloud.apache.org.
S. Sanfilippo, P. Noordhuis, Redis, 2014. http://redis.io.
hiredis, 2016. https://github.com/redis/hiredis.
P. Hunt, M. Konar, F.P. Junqueira, B. Reed, ZooKeeper: wait-free coordination for internet-scale systems, in: USENIX Annual Technical Conference, Vol. 8, 2010, pp. 11–11.
SCEC project, Southern California Earthquake Center, 2015. http://www.scec.org/.
Pegasus workflow generator, 2016. https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator.
Juve, 2013, Characterizing and profiling scientific workflows, Future Gener. Comput. Syst., 29, 682, 10.1016/j.future.2012.08.015
Z. Zhang, D. Katz, Using application skeletons to improve escience infrastructure, in: 2014 IEEE 10th International Conference on e-Science (e-Science), Vol. 1, 2014, pp. 111–118.
DAS-4, The distributed ASCI supercomputer, 2016. http://www.cs.vu.nl/das4/.
Open Nebula, 2016. http://www.opennebula.org.
C. Guo, G. Lu, H.J. Wang, S. Yang, C. Kong, P. Sun, W. Wu, Y. Zhang, Secondnet: A data center network virtualization architecture with bandwidth guarantees, in: Proceedings of the 6th International COnference, Co-NEXT ’10, 2010, pp. 15:1–15:12.
R.B. Ross, R. Thakur, et al. PVFS: A parallel file system for linux clusters, in: 4th Annual Linux Showcase and Conference, 2000, pp. 391–430.
GlusterFS, 2016. http://www.gluster.org/.
F. Hupfeld, T. Cortes, B. Kolbeck, J. Stender, E. Focht, M. Hess, J. Malo, J. Marti, E. Cesario, The XtreemFS Architecture — a case for object-based file systems in grids, Concurr. Comput. Pract. Exp.
Shvachko, 2010, The Hadoop distributed file system, 1
Weil, 2006, Ceph: A scalable, high-performance distributed file system, 307
B. Nicolae, P. Riteau, K. Keahey, Bursting the Cloud Data Bubble: Towards transparent storage elasticity in IaaS clouds, in: IEEE 28th International Parallel and Distributed Processing Symposium, IPDPS ’14, 2014, pp. 135–144.
H.C. Lim, S. Babu, J.S. Chase, Automated control for elastic storage, in: 7th International Conference on Autonomic Computing, ICAC ’10, 2010, pp. 1–10.
Ousterhout, 2011, The case for RAMCloud, Commun. ACM, 54, 121, 10.1145/1965724.1965751
A. Dragojevic, D. Narayanan, M. Castro, O. Hodson, FaRM: Fast remote memory, in: 11th USENIX Symposium on Networked Systems Design and Implementation, 2014, pp. 401–414.
Islam, 2014, In-memory i/o and replication for hdfs with memcached: Early experiences, 213
Duro, 2013, A hierarchical parallel storage system based on distributed memory for large scale systems
Amazon ElastiCache, 2016. http://aws.amazon.com/elasticache/.
Hazelcast, 2016. http://http://hazelcast.com/.
T. Li, X. Zhou, K. Brandstatter, D. Zhao, K. Wang, A. Rajendran, Z. Zhang, I. Raicu, ZHT: A light-weight reliable persistent dynamic zero-hop distributed hash table, in: Parallel & Distributed Processing Symposium (IPDPS), 2013.
Brinkmann, 2002, Compact, adaptive placement schemes for non-uniform requirements, 53
Schindelhauer, 2005, Weighted Distributed Hash Tables, 218
P. Qin, B. Dai, B. Huang, G. Xu, Bandwidth-aware scheduling with sdn in hadoop: A new trend for big data, arXiv preprint arXiv:1403.2800.
Kondikoppa, 2012, Network-aware scheduling of mapreduce framework ondistributed clusters over high speed networks, 39
Yazdanov, 2015, Ehadoop: network i/o aware scheduler for elastic mapreduce cluster, 821
Lin, 2014, Bandwidth-aware divisible task scheduling for cloud computing, Softw. - Pract. Exp., 44, 163, 10.1002/spe.2163
Chaves, 2013, Scheduling cloud applications under uncertain available bandwidth, 3781