Sự Giảm Nhiệt Độ Nóng Chảy và Sự Khuếch Tán Nhanh Trong Vật Liệu Hàn Nanostructure Bị Hạn Chế Giữa Các Nanolayers Rào Cản

Journal of Materials Engineering and Performance - Tập 25 - Trang 3275-3284 - 2016
G. Kaptay1,2, J. Janczak-Rusch3, L. P. H. Jeurgens3
1BAY ZOLTAN Nonprofit Ltd., Miskolc, Hungary
2University of Miskolc, Miskolc, Hungary
3Laboratory for Joining Technologies & Corrosion, Empa, Swiss Laboratories for Materials Science and Technology, Dübendorf, Switzerland

Tóm tắt

Việc hàn thành công bằng cách sử dụng các vật liệu hàn nanostructured dựa trên Cu ở nhiệt độ thấp hơn nhiều so với nhiệt độ nóng chảy chung của Cu đã được chứng minh gần đây (Lehmert et al. trong, Mater Trans 56:1015–1018, 2015). Các vật liệu nano dựa trên Cu được cấu thành từ các lớp nanolayer Cu xen kẽ và một rào cản AlN không ướt có tính thẩm thấu. Trong nghiên cứu này, một mô hình nhiệt động lực học được xây dựng để ước lượng sự giảm nhiệt độ nóng chảy (MPD) trong các lớp nhiều nano Cu/AlN (NMLs) dựa trên độ dày của lớp nanolayer Cu. Tùy thuộc vào con đường nóng chảy, mô hình dự đoán một dải MPD từ 238-609 K cho các NML Cu10nm/AlN10nm, điều này cho thấy một khoảng nhiệt độ tiền nóng chảy không đồng nhất từ 750-1147 K (476-874 °C), điều này phù hợp với các quan sát thực nghiệm. Như đã được gợi ý bởi các cân nhắc động học cơ bản, sự chảy ra của Cu đến bề mặt NML ở nhiệt độ từ 723-1023 K (450-750 °C) cũng có thể được giải thích một phần bởi sự khuếch tán nhanh của Cu trong pha rắn dọc theo các lớp giao diện nội bộ, đặc biệt là ở nhiệt độ cao hơn.

Từ khóa

#Nhiệt độ nóng chảy #Khuếch tán nhanh #Vật liệu hàn #Nanostructured #Cu/AlN

Tài liệu tham khảo

B. Lehmert, J. Janczak-Rusch, G. Pigozzi, P. Zuraw, F. La Mattina, L. Wojarski, W. Tillmann, and L.P.H. Jeurgens, Copper-Based Nanostructured Coatings for Low-Temperature Brazing Applications, Mater. Trans., 2015, 56(7), p 1015–1018 G. Kaptay, J. Janczak-Rusch, G. Pigozzi, and L.P.H. Jeurgens, Theoretical Analysis of Melting Point Depression of Pure Metals in Different Initial Configurations, J. Mater. Eng. Perform., 2014, 23, p 1600–1607 Q.S. Mei and K. Lu, Melting and Superheating of Crystalline Solids: From Bulk to Nanocrystals, Progr. Mater. Sci., 2007, 52, p 1175–1262 G. Guenther and O. Guillon, Models of Size-Dependent Nanoparticle Melting Tested on Gold, J. Mater. Sci., 2014, 49, p 7915–7932 P. Pawlow, Über die Abhängigkeit des Schmelzpunktes von der Oberflächenergie eines festen Körpers, Z Phys. Chemie, 1908, 55, p 545–548 M. Takagi, Electron-Diffraction Study of Liquid-Solid Transition of Thin Solid Films, J. Phys. Soc. Japan, 1954, 9(3), p 359–363 J. Janczak-Rusch, G. Kaptay, and L.P.H. Jeurgens, Interfacial Design for Joining Technologies—An Historical Perspective, J. Mater. Eng. Perform., 2014, 23, p 1608–1613 Z. Wang, L.P.H. Jeurgens, and W. Sigle, Eric J. Mittemeijer, Observation and Origin of Extraordinary Atomic Mobility at Metal-Semiconductor Interfaces at Low Temperatures, Phys. Rev. Lett., 2015, 115, p 016102 R. Longtin, E. Hack, J. Neuenschwander, and J. Janczak-Rusch, Benign Joining of Ultrafine Grained Aerospace Aluminum Alloys Using Nanotechnology, Adv. Mater., 2011, 20, p 1–5 T.T. Bao, Y. Kim, J. Lee, and J.G. Lee, Preparation and Thermal Analysis of Sn-Ag Nano Solders, Mater. Trans., 2010, 51, p 2145–2149 C. Zou, Y. Gao, B. Yang, and Q. Zhai, Synthesis and DSC Study on Sn3.5Ag Alloy Nanoparticles Used for Lower Melting Temperature Solder, J. Mater. Sci.: Mater. Electron., 2010, 21, p 868–874 J.F. Pocza, A. Barna, and P.B. Barna, Formation Processes of Vacuum-Deposited Indium Films and Thermodynamical Properties of Submicroscopic Particles Observed by In-Situ Electron Microscopy, J. Vacuum Sci. Techn., 1969, 6(4), p 472–475 C.J. Coombes, The Melting of Small Particles of Lead and Indium, J. Phys. F, 1972, 2, p 441–449 J. Janczak-Rusch, G. Pigozzi, B. Lehmert, M. Parlinska, V. Bissig, W. Tillmann, L. Wojarski, F. Hoffmann, Proceedings of the of IBSC 2012—5th International Brazing and Soldering Conference, 2012, p 163 J. Janczak-Rusch, M. Chiodi, C. Cancellieri, F. Moszner, R. Hauert, G. Pigozzi, and L.P.H. Jeurgens, Structural Evolution of Ag–Cu Nano-Alloys Confined Between AlN Nano-Layers upon Fast Heating, Phys. Chem. Chem. Phys., 2015, 17, p 28228 G. Pigozzi, A. Antusek, J. Janczak-Rusch, M. Parlinska-Wojtan, D. Passerone, C.A. Pignedoli, V. Bissig, J. Patscheider, and L.P.H. Jeurgens, Phase Constitution and Interface Structure of Nano-Sized Ag-Cu/AlN Multilayers: Experimental and ab Initio Modeling, Appl. Phys. Lett., 2012, 101, p 181602 G. Garzel, J. Janczak-Rusch, and L. Zabdyr, Reassessment of the Ag-Cu Phase Diagram for Nanosystems Including Particle Size and Shape Effect, Calphad, 2012, 36, p 52–56 J. Janczak-Rusch, M. Chiodi, F. Moszner, C. Cancellieri, R. Hauert, L.P.H. Jeurgens, Development of nanostructured silver-based brazing fillers in a multilayer configuration for low-temperature joining, 68th Annual Assembly and International Conference, IIW 2015, SC-MICRO, Microjoining and Nanojoining Workshop, 28 June–3 July 2015, Helsinki, Finland, 2015 M. Chiodi, C. Cancellieri, F. Moszner, M. Andrzejczuk, J. Janczak-Rusch, L.P.H. Jeurgens, Massive Ag Migration Through Metal/Ceramic Nano-Multilayers: Interplay Between Temperature, Stress-Relaxation and Oxygen-Enhanced Mass Transport, J. Mater. Chem. C, 2016. doi:10.1039/C6TC01098A J. Lipecka, J. Janczak-Rusch, M. Lewandowska, M. Andrzejczuk, G. Richter, L.P.H. Jeurgens, Phase Stability and Melting Point Depression of Nano-Confined Al-Si10at.% Alloys in AlSi/AlN Nano-Multilayered Brazing Fillers, 2016 (in preparation) A.N. Belov, S.V. Bulyarsky, D.G. Gromov, L.M. Pavlova, and O.V. Pyatilova, Study of Silver Cluster Formation From Thin Films on Inert Surface, Calphad, 2014, 44, p 138–141 I. Barin, Thermomechanical Properties of Pure Substances, VCh, 1993, in 2 parts A.T. Dinsdale, SGTE Data for Pure Elements, CALPHAD, 1991, 15, p 317–425 Ph Buffat and J.-P. Borel, Size Effect on the Melting Temperature of Gold Particles, Phys. Rev. A, 1976, 13, p 2287–2296 J.-G. Lee, J. Lee, T. Tanaka, and H. Mori, In Situ Atomic-Scale Observation of Melting Point Suppression in Nanometer-Sized Gold Particles, Nanotechnology, 2009, 20, p 475706 P.R. Couchman and W.A. Jesser, Thermodynamic Theory of Size Dependence of Melting Temperature in Metals, Nature, 1977, 269, p 481–483 F. Spaepen and D. Turnbull, Negative Pressures and Melting Point Depression in Oxide-Coated Liquid Metal Droplets, Scr. Metall., 1979, 13, p 149–151 G.L. Allen, W.W. Gile, and W.A. Jesser, The Melting Temperature of Microcrystals Embedded in a Matrix, Acta Metall., 1980, 28, p 1695–1701 R. Kofman, P. Cheyssac, A. Aouaj, Y. Lereah, G. Deuscher, T. Ben-David, J.M. Penisson, and A. Bourret, Surface Melting Enhanced by Curvature Effects, Surf. Sci., 1994, 303, p 231–246 K. Chattopadhyay and R. Goswami, Melting and Superheating of Metals and Alloys, Progr. Mater. Sci., 1997, 42, p 287–300 M. Wautelet, On the Shape Dependence of the Melting Temperature of Small Particles, Phys. Lett. A, 1998, 246, p 341–342 Z. Zhang, J.C. Li, and Q. Jiang, Modelling for Size-Dependent and Dimension-Dependent Melting of Nanocrystals, J. Phys. D, 2000, 33, p 2653–2656 Q. Jiang, Z. Zhang, and J.C. Li, Melting Thermodynamics of Nanocrystals Embedded in a Matrix, Acta Mater., 2000, 48, p 4791–4795 T. Tanaka and S. Hara, Thermodynamic Evaluation of Binary Phase Diagrams of Small Particle Systems, Z. Metallkd., 2001, 92, p 467–472 M. Hillert and J. Argen, Effect of Surface Free Energy and Surface Stress on Phase Equilibria, Acta Mater., 2002, 50, p 2429–2441 U. Tartaglino and E. Tosatti, Strain Effects at Solid Surfaces Near the Melting Point, Surf. Sci., 2003, 532–535, p 623–627 Q. Jiang, L.H. Liang, and J.C. Li, Thermodynamic Superheating of Low-Dimensional Metals Embedded in Matrix, Vacuum, 2003, 72, p 249–255 Z. Shi, P. Wynblatt, and S.G. Srinivasan, Melting Behavior of Nanosized Lead Particles Embedded in an Aluminium Matrix, Acta Mater., 2004, 52, p 2305–2316 V.M. Samsonov and O.A. Malkov, Thermodynamic Model of Crystallization and Melting of Small Particles, Central Eur. J. Phys., 2004, 2(1), p 90–103 Q.S. Mei, S.C. Wang, H.T. Cong, Z.H. Jin, and K. Lu, Determination of Pressure Effect on the Melting Point Elevation of Al Nanoparticles Encapsulated in Al2O3 Without Epitaxial Interface, Phys. Rev. B, 2004, 70, p 125421 J. Chang and E. Johnson, Surface and Bulk Melting of Small Metal Clusters, Philos. Mag., 2005, 85(30), p 3617–3627 J. Slutsker, K. Thornton, A.L. Roytburd, J.A. Warren, and G.B. McFadden, Phase Field Modeling of Solidification Under Stress, Phys. Rev. B, 2006, 74(1), p 014103 J.J. Hoyt, Effect of Stress on Melting and Freezing in Nanopores, Phys. Rev. Lett., 2006, 96(4), p 045702 G. Guisbiers and M. Wautelet, Size, Shape and Stress Effects on the Melting Temperature of Nano-Polyhedral Grains on a Substrate, Nanotechnology, 2006, 17, p 2008–2011 J. Sun and S.L. Simon, The Melting Behavior of Aluminum Nanoparticles, Thermochim. Acta, 2007, 463, p 32–40 G. Guisbiers, O. Van Overschelde, and M. Wautelet, Nanoparticulate Origin of Intrinsic Residual Stress in Thin Films, Acta Mater., 2007, 55, p 3541–3546 O.A. Yeshchenko, I.M. Dmitruk, A.A. Alexeenko, and A.M. Dmytruk, Size-Dependent Melting of Spherical Copper Nanoparticles Embedded in a Silica Matrix, Phys Rev B, 2007, 75(8), p 085434 P. Letellier, A. Mayaffre, and M. Turmine, Melting Point Depression of Nanosolids: Nonextensive Thermodynamics Approach, Phys. Rev. B, 2007, 76, p 045428 J. Lee, T. Tanaka, J. Lee, and H. Mori, Effect of Substrates on the Melting Temperature of Gold Nanoparticles, Calphad, 2007, 31, p 105–111 K.K. Nanda, Size-Dependent Melting of Nanoparticles: Hundred Years of Thermodynamic Model, Pramana J. Phys., 2009, 172, p 617–628 V.I. Levitas, M. Pantoya, G. Chauhan, and I.J. Rivero, Effect of the Alumina Shell on the Melting Temperature Depression for Aluminum Nanoparticles, Phys. Chem. C., 2009, 113(32), p 14088–14096 G. Kaptay, The Extension of the Phase Rule to Nano-Systems and on the Quaternary Point in One-Component Nano Phase Diagrams, J. Nanosci. Nanotechnol., 2010, 10, p 8164–8170 W. Luo, L. Deng, K. Su, K. Li, G. Liao, and S. Xiao, Gibbs Free Energy Approach to Calculate the Thermodynamic Properties of Copper Nanocrystals, Phys. B, 2011, 406, p 859–863 V.I. Levitas and K. Samani, Size and Mechanics Effects in Surface-Induced Melting of Nanoparticles, Nature Comm., 2011, 2, p 284 V.I. Levitas and K. Samani, Coherent Solid/Liquid Interface With Stress Relaxation in a Phase-Field Approach to the Melting/Solidification Transition, Phys. Rev. B, 2011, 84(14), p 140103 G. Kaptay, The Gibbs Equation Versus the Kelvin and the Gibbs-Thomson Equations to Describe Nucleation and Equilibrium of Nano-Materials, J. Nanosci. Nanotechnol., 2012, 12(3), p 2625–2633 A.I. Rusanov, The Development of the Fundamental Concepts of Surface Thermodynamics, Coll. J., 2012, 74(2), p 136–153 G. Kaptay, Nano-Calphad: Extension of the Calphad Method to Systems With Nano-Phases and Complexions, J. Mater. Sci., 2012, 47, p 8320–8335 V.I. Levitas, Z. Ren, Y. Zeng, Z. Zhang, and G. Han, Effect of the Alumina Shell on the Melting Temperature Depression for Aluminum Nanoparticles, Phys. Rev. B, 2012, 85(22), p 220104 J. Leitner and M. Kamrádek, Termodynamicky Popis Nanosystemu, Chem. Listy, 2013, 107, p 606–613 A. Firmansyah, K. Sullivan, K.S. Lee, Y.H. Kim, R. Zahaf, M.R. Zachariah, and D.J. Lee, Microstructural Behavior of the Alumina Shell and Aluminum Core Before and After Melting of Aluminum Nanoparticles, Phys. Chem. C, 2013, 116(1), p 404–411 J. Lee and K.J. Sim, General Equations of Calphad-Type Thermodynamic Description for Metallic Nanoparticle Systems, Calphad, 2014, 44, p 129–132 A. Junkaew, B. Ham, X. Zhang, and R. Arróyave, Tailoring the Formation of Metastable Mg Through Interfacial Engineering: A Phase Stability Analysis, Calphad, 2014, 45, p 45–150 I. Atanasov, R. Ferrando, and R.L. Johnston, Structure and Solid Solution Properties of Cu–Ag Nanoalloys, J. Phys.: Condens. Matter, 2014, 26, p 275301–275309 J. Sopousek, O. Zobac, J. Bursık, P. Roupcova, V. Vykoukal, P. Broz, J. Pinkas, and J. Vrestal, Heat-Induced Spinodal Decomposition of Ag–Cu Nanoparticles, Phys. Chem. Chem. Phys., 2015, doi:10.1039/c5cp00198f S. Bajaj, M.G. Haverty, R. Arróyave, W.A. Goddard, III, and S. Shankar, Phase Stability in Nanoscale Material Systems: Extension From Bulk Phase Diagrams, Nanoscale, 2015, doi:10.1039/c5nr01535a L. Wojtczak, The Melting point of Thin Films, Phys. Stat. Sol., 1967, 22, p K163–K166 C.L. Chen, J.-G. Lee, K. Arakawa, and H. Mori, In Situ Observations of Crystalline-to-Liquid and Crystalline-to-Gas Transitions of Substrate-Supported Ag Nanoparticles, Appl. Phys. Lett., 2010, 96, p 253104 L.P.H. Jeurgens, Z. Wang, and E.J. Mittemeijer, Thermodynamics of Reactions and Phase Transformations at Interfaces and Surfaces, Int. J. Mater. Res., 2009, 100, p 1281–1307 D.G. Gromov and S.A. Gavrilov, Manifestation of the Heterogeneous Mechanism Upon Melting of Low-Dimensional Systems, Phys. Solid State, 2009, 51(10), p 2135–2144 H.W. Sheng, G. Ren, L.M. Peng, Z.Q. Hu, and K. Lu, Epitaxial Dependence of the Melting Behavior of In Nanoparticles Embedded in Al matrices, J Mater Res, 1997, 12(1), p 119–123 H.W. Sheng, K. Lu, and E. Ma, Acta Mater., 1998, 46, p 5195 L.P.H. Jeurgens, W.G. Sloof, F.D. Tichelaar, and E.J. Mittemeijer, Thermodynamic Stability of Amorphous Oxide Films on Metals: Application to Aluminium-Oxide Films on Aluminium Substrates, Physical Review B, 2000, 62, p 4707–4719 J. Emsley, The Elements, Clarendon Press, Oxford, 1989 Y.S. Touloukian, R.K. Kirby, R.E. Taylor, and T.Y.R. Lee, Thermal Expansion, IFI/Plenum, New York, 1977 G. Kaptay, Approximated Equations for Molar Volumes of Pure Solid Fcc Metals and Their Liquids From Zero Kelvin to Above Their Melting Points at Standard Pressure, J. Mater. Sci., 2015, 50, p 678–687 T. Iida and R.I.L. Guthrie, The Physical Properties of Liquid Metals, Clarendon Press, Oxford, 1993 G. Kaptay, A Unified Model for the Cohesive Enthalpy, Critical Temperature, Surface Tension and Volume Thermal Expansion Coefficient of Liquid Metals of Bcc, Fcc and Hcp Crystals, Mater. Sci. Eng. A, 2008, 495, p 19–26 N. Eustathopoulos, M.G. Nicholas, and B. Drevet, Wettability at High Temperatures, Pergamon, Amsterdam, 1999 G. Kaptay, E. Báder, and L. Bolyán, Interfacial Forces and Energies Relevant to Production of Metal Matrix Composites, Mater. Sci. Forum, 2000, 329–330, p 151–156 G. Kaptay, Modeling Interfacial Energies in Metallic Systems, Mater. Sci. Forum, 2005, 473–474, p 1–10 K. Maier, Self-diffusion in Copper at “Low” Temperatures, Phys. Status solidi (a), 1977, 44, p 567 E. Budke, T. Surholt, S.I. Prokofjev, and L.S. Shvindlerman, Chr. Herzig, Tracer Diffusion of Au and Cu in a Series of Near & #xF053; = 5 (310)(Ref 001) Symmetrical Cu Tilt Grain, Acta Mater., 1999, 47, p 385 D.R. Poirier and G.H. Geiger, Transport Phenomena in Materials Processing, TMS, Warrendale, 1994, p 658