Melt flow behavior of polypropylene composites filled with multi-walled carbon nanotubes during extrusion
Tài liệu tham khảo
Potschke, 2003, Polymer, 44, 8061, 10.1016/j.polymer.2003.10.003
Sreekumar, 2004, Adv. Mater., 16, 58, 10.1002/adma.200305456
Kumar, 2002, Macromolecules, 35, 9039, 10.1021/ma0205055
Kumar, 2002, Polymer, 43, 1701, 10.1016/S0032-3861(01)00744-3
Bhattacharyya, 2003, Crystallization and orientation studies in polypropylene/single walled carbon nanotubes composites, Polymer, 44, 2373, 10.1016/S0032-3861(03)00073-9
Andrews, 2002, Macromol. Mater. Eng., 287, 395, 10.1002/1439-2054(20020601)287:6<395::AID-MAME395>3.0.CO;2-S
Moore, 2004, J. Appl. Polym. Sci., 93, 2926, 10.1002/app.20703
Funck, 2007, Compos Sci. Technol., 65, 906, 10.1016/j.compscitech.2006.01.034
Assouline, 2003, Nucleation ability of multiwall carbon nanotubes in Polypropylene composites, J. Polym. Sci. Part A: Polym. Phys., 41, 520, 10.1002/polb.10394
Dintcheva, 2011, Effect of elongational flow on morphology and properties of polymer/CNTs nanocomposite fibers, Polym. Adv. Technol., 22, 1612, 10.1002/pat.1648
Liang, 2012, Melt flow behavior in capillary extrusion of nanosized calcium carbonate filled poly(L-lactic acid) bio-composites, Polym. Eng. Sci., 52, 1830, 10.1002/pen.23130
Liang, 2012, Melt flow behavior in capillary extrusion of nanometer calcium carbonate filled PCL bio-composites, Polym. Test, 31, 149, 10.1016/j.polymertesting.2011.10.006
Liang, 2011, Melt shear viscosity of PP/Al(OH)3/Mg(OH)2 flame retardant composites at high extrusion rates, J. Appl. Polym. Sci., 119, 1835, 10.1002/app.32893
Liang, 2007