Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Cải thiện tính chất lưu trữ natri của NaTi2(PO4)3/C bằng thiết kế cấu trúc hợp lý
Tóm tắt
Pin ion natri được coi là một thế hệ thay thế tiềm năng cho pin ion lithium nhờ vào việc dự trữ natri phong phú và chi phí thấp. NaTi2(PO4)3 kiểu NASICON sở hữu các kênh ba chiều, điều này giúp nó thể hiện hiệu suất lưu trữ natri xuất sắc. Đây là một anot tiềm năng cho pin ion natri. Trong bài báo này, tính chất lưu trữ natri của NaTi2(PO4)3/C đã được cải thiện thêm thông qua thiết kế cấu trúc hợp lý. Chúng tôi đã tổng hợp NaTi2(PO4)3-xCl3x/C (x = 0, 0.05, 0.1, 0.2) bằng phương pháp sol-gel và áp dụng nó cho vật liệu anot cho pin ion natri. Việc dop Clo vào vị trí PO43− không có ảnh hưởng đáng kể đến cấu trúc tinh thể và sự agglomeration của các vật liệu. Điều rõ ràng là hiệu suất điện hóa của tất cả các mẫu dop Clo đều tốt hơn so với mẫu trống. Khi lượng dop tăng lên, hiệu suất đầu tiên được cải thiện và sau đó giảm. Đối với hiệu suất tỉ lệ của tất cả các mẫu, NaTi2(PO4)2.9Cl0.3 (NC/Cl-30) cung cấp khả năng xả 257.8, 212.7, 169.5 và 146.3 mAh g−1 ở các dòng 0.1, 0.4, 2 và 4 A g−1, với sự cải thiện đáng kể lần lượt là 133.7, 124.4, 113.2 và 112.2 mAh g−1 so với NaTi2(PO4)3/C (NC). Ngoài ra, NC/Cl-30 cũng thể hiện hiệu suất chu trình xuất sắc. Khả năng xả của NC/Cl-30 tại 1 A g−1 sau 1000 chu kỳ đạt 142.2 mAh g−1, lớn hơn 62.9 mAh g−1 so với NC. NC/Cl-30 có công suất cao hơn nhờ vào việc dop Clo hợp lý. Công trình của chúng tôi cung cấp một số tham khảo cho việc tối ưu hóa hiệu suất của NaTi2(PO4)3 trong pin ion natri thông qua phương pháp doping anion.
Từ khóa
#pin ion natri #NaTi2(PO4)3 #dop Clo #hiệu suất lưu trữ natri #thiết kế cấu trúc hợp lýTài liệu tham khảo
Li J, Chen J, Wan H, Xiao J, Tang Y, Liu M, Wang H (2019) Boosting oxygen reduction activity of Fe-N-C by partial copper substitution to iron in Al-air batteries. Appl Catal B Environ 242:209–217
Li Z, Young D, Xiang K, Carter WC, Chiang Y-M (2013) Towards high power high energy aqueous sodium-ion batteries: the NaTi2(PO4)3/Na0.44MnO2 system. Adv Energy Mater 3:290–294
He H, Gan Q, Wang H, Xu G-L, Zhang X, Huang D, Fu F, Tang Y, Amine K, Shao M (2018) Structure-dependent performance of TiO2/C as anode material for Na-ion batteries. Nano Energy 44:217–227
Jiang Y, Feng X, Cheng G, Li Y, Li C, He Z, Zhu J, Meng W, Zhou H, Dai L, Wang L (2019) Electrocatalytic activity of MnO2 nanosheet array-decorated carbon paper as superior negative electrode for vanadium redox flow batteries. Electrochim Acta 322:134754–134762
Cheng HZA, Zhong W, Li Z, Tang Y, Li Z (2019) Enhanced electrochemical properties of single-layer MoS2 embedded in carbon nanofibers by electrospinning as anode materials for sodium-ion batteries. J Electroanal Chem 843:31–36
Jiang Z, Liu L, Li Y, Zhu J, Li C, He Z, Meng W, Jiang Y, Dai L, Wang L (2018) Improved lithium storage performance of NaTi2(PO4)3/C composite connected by carbon nanotubes. Solid State Ionics 325:189–195
Wu X, Li Y, Zhao S, Zeng F, Peng X, Xiang Y, Ruan Q, Gao F, He T, Wu J (2019) Fabrication of F-doped, C-coated NiCo2O4 nanocomposites and its electrochemical performances for lithium-ion batteries. Solid State Ionics 334:48–55
Wu X, Li Y, Xiang Y, Liu Z, He Z, Wu X, Li Y, Xiong L, Li C, Chen J (2016) The electrochemical performance of aqueous rechargeable battery of Zn/Na0.44MnO2 based on hybrid electrolyte. J Power Sources 336:35–39
Jiang Z, Li Y, Zhu J, Li B, Li C, Wang L, Meng W, He Z, Dai L (2019) Synthesis and performance of a graphene decorated NaTi2(PO4)3/C anode for aqueous lithium-ion batteries. J Alloys Compd 791:176–183
Liu Y, Liu Y, Shi H, Wang M, Cheng SH-S, Bian H, Kamruzzaman M, Cao L, Chung CY, Lu Z (2016) Cobalt-copper layered double hydroxide nanosheets as high performance bifunctional catalysts for rechargeable lithium-air batteries. J Alloys Compd 688:380–387
Shi M, Kong L-B, Liu J-B, Yan K, Li J-J, Dai Y-H, Luo Y-C, Kang L (2015) A novel carbon source coated on C-LiFePO4 as a cathode material for lithium-ion batteries. Ionics 22:185–192
Li L, Kim S, Wang W, Vijayakumar M, Nie Z, Chen B, Zhang J, Xia G, Hu J, Graff G, Liu J, Yang Z (2011) A stable vanadium redox-flow battery with high energy density for large-scale energy storage. Adv Energy Mater 1:394–400
Luo D, Lei P, Huang Y, Tian G, Xiang X (2019) Improved electrochemical performance of graphene-integrated NaTi2(PO4)3/C anode in high-concentration electrolyte for aqueous sodium-ion batteries. J Electroanal Chem 838:66–72
Qi S, Xu B, Tiong VT, Hu J, Ma J (2020) Progress on iron oxides and chalcogenides as anodes for sodium-ion batteries. Chem Eng J 379:122261–122292
Lv Y, Zhang L, Cheng G, Wang P, Zhang T, Li C, Jiang Y, He Z, Dai L, Wang L (2019) Preparation of carbon nanosheet by molten salt route and its application in catalyzing VO2+/VO2+ redox reaction. J Electrochem Soc 166:A953–A959
Alias N, Mohamad AA (2015) Advances of aqueous rechargeable lithium-ion battery: A review. J Power Sources 274:237–251
Wadia C, Albertus P, Srinivasan V (2011) Resource constraints on the battery energy storage potential for grid and transportation applications. J Power Sources 196:1593–1598
Ellis BL, Nazar LF (2012) Sodium and sodium-ion energy storage batteries. Curr Opin Solid State Mater Sci 16:168–177
Chen X, Chen X, Ni J, Pan Y, Jia Z, Zhuang G, Zhang Z (2018) Co3O4/carbon allotrope composites as anode material for sodium-ion batteries. J Electroanal Chem 830-831:116–121
Li R, Xiao W, Miao C, Fang R, Wang Z, Zhang M (2019) Sphere-like SnO2/TiO2 composites as high-performance anodes for lithium ion batteries. Ceram Int 45:13530–13535
Huang Z, Luo P, Wang D (2017) Preparation and characterization of core-shell structured LiFePO4/C composite using a novel carbon source for lithium-ion battery cathode. J Phys Chem Solids 102:115–120
Ni Q, Bai Y, Wu F, Wu C (2017) Polyanion-type electrode materials for sodium-ion batteries. Adv Sci 4:1600275–1600299
Wang L, Xie X, Dinh K, Yan Q, Ma J (2019) Synthesis, characterizations, and utilization of oxygen-deficient metal oxides for lithium/sodium-ion batteries and supercapacitors. Coord Chem Rev 397:138–167
Fang R, Xiao W, Miao C, Mei P, Zhang Y, Yan X, Jiang Y (2019) Enhanced lithium storage performance of core-shell structural Si@TiO2/NC composite anode via facile sol-gel and in situ N-doped carbon coating processes. Electrochim Acta 317:575–582
Wu M, Xu B, Zhang Y, Qi S, Ni W, Hu J, Ma J (2020) Perspectives in emerging bismuth electrochemistry. Chem Eng J 381:122558–112574
Yang S, Zhang M, Wu X, Wu X, Zeng F, Li Y, Duan S, Fan D, Yang Y, Wu X (2019) The excellent electrochemical performances of ZnMn2O4/Mn2O3: The composite cathode material for potential aqueous zinc ion batteries. J Electroanal Chem 832:69–74
Kundu D, Talaie E, Duffort V, Nazar LF (2015) The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew Chem Int Ed 54:3431–3448
Han MH, Gonzalo E, Singh G, Rojo T (2015) A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries. Energy Environ Sci 8:81–102
Hu F, Jiang X (2018) Li-substituted P2-Na0.66LixMn0.5Ti0.5O2 as an advanced cathode material and new “bi-functional” electrode for symmetric sodium-ion batteries. Adv Powder Technol 29:1049–1053
Wei P, Liu Y, Su Y, Miao L, Huang Y, Liu Y, Qiu Y, Li Y, Zhang X, Xu Y, Sun X, Fang C, Li Q, Han J, Huang Y (2019) F-doped NaTi2(PO4)3/C nanocomposite as a high-performance anode for sodium-ion batteries. ACS Appl Mater Interfaces 11:3116–3124
Mao J, Luo C, Gao T, Fan X, Wang C (2015) Scalable synthesis of Na3V2(PO4)3/C porous hollow spheres as a cathode for Na-ion batteries. J Mater Chem A 3:10378–10385
Chen Y, Xu Y, Sun X, Zhang B, He S, Li L, Wang C (2018) Preventing structural degradation from Na3V2(PO4)3 to V2(PO4)3: F-doped Na3V2(PO4)3/C cathode composite with stable lifetime for sodium ion batteries. J Power Sources 378:423–432
Xu B, Qi S, He P, Ma J (2019) Antimony- and bismuth-based chalcogenides for sodium-ion batteries. Chem Asian J 14:2925–2937
Liang J, Fan K, Wei Z, Gao X, Song W, Ma J (2018) Porous NaTi2(PO4)3@C nanocubes as improved anode for sodium-ion batteries. Mater Res Bull 99:343–348
Schimmoeller B, Blizanac B, Massey K, DuPasquier A, Kodas T, Oljaca M, Smith G, Kutsovsky Y (2015) Synthesis of Si and tin-doped Si powders via gas-phase sodium reduction for Li-ion batteries. Adv Powder Technol 26:1652–1662
Wang X, Niu C, Meng J, Hu P, Xu X, Wei X, Zhou L, Zhao K, Luo W, Yan M, Mai L (2015) Novel K3V2(PO4)3/C bundled nanowires as superior sodium-ion battery electrode with ultrahigh cycling stability. Adv Energy Mater 5:1500716–1500724
Chen L, Liu S, Wang Y, Zhao L, Zhao Y (2019) 2, 3-Dicyano-5, 6-dichloro-1, 4-benzoquinone as a novel organic anode for sodium-ion batteries. J Electroanal Chem 837:226–229
Liu S, Wang L, Liu J, Zhou M, Nian Q, Feng Y, Tao Z, Shao L (2019) Na3V2(PO4)2F3–SWCNT: a high voltage cathode for non-aqueous and aqueous sodium-ion batteries. J Mater Chem A 7:248–256
Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114:11636–11682
Huang Y, Li X, Wang J, Miao L, Li C, Han J, Huang Y (2018) Superior Na-ion storage achieved by Ti substitution in Na3V2(PO4)3. Energy Storage Mater 15:108–115
Yang L, Jiao L, Miao Y, Yuan H (2008) Improvement of electrochemical properties of LiFePO4/C cathode materials by chlorine doping. J Solid State Electrochem 13:1541–1544
Wang J, Ren B, Hojamberdiev M, Xu Y, Yan H (2014) Sodium gluconate-assisted hydrothermal synthesis, characterization and electrochemical performance of LiFePO4 powders. Adv Powder Technol 25:567–573
Jian Z, Hu YS, Ji X, Chen W (2017) NASICON-structured materials for energy storage. Adv Mater 29:1601925–1601941
Wu M, Ni W, Hu J, Ma J (2019) NASICON-structured NaTi2(PO4)3 for sustainable energy storage. Nano-Micro Lett 11:44–79
Jiang Z, Zhu J, Li Y, He Z, Meng W, Jiang Y, Dai L, Wang L (2018) Effect of Sn doping on the electrochemical performance of NaTi2(PO4)3/C composite. Ceram Int 44:15646–15652
Yang J, Wang H, Hu P, Qi J, Guo L, Wang L (2015) A high-rate and ultralong-life sodium-ion battery based on NaTi2(PO4)3 nanocubes with synergistic coating of carbon and rutile TiO2. Small 11:3744–3749
Wang D, Liu Q, Chen C, Li M, Meng X, Bie X, Wei Y, Huang Y, Du F, Wang C, Chen G (2016) NASICON-structured NaTi2(PO4)3@C nanocomposite as the low operation-voltage anode material for high-performance sodium-ion batteries. ACS Appl Mater Interfaces 8:2238–2246
Pang G, Nie P, Yuan C, Shen L, Zhang X, Li H, Zhang C (2014) Mesoporous NaTi2(PO4)3/CMK-3 nanohybrid as anode for long-life Na-ion batteries. J Mater Chem A 2:20659–20666
Hu Y, Ma X, Guo P, Jaeger F, Wang Z (2017) Design of NaTi2(PO4)3 nanocrystals embedded in N-doped graphene sheets for sodium-ion battery anode with superior electrochemical performance. Ceram Int 43:12338–12342
Aragón MJ, Vidal-Abarca C, Lavela P, Tirado JL (2014) High reversible sodium insertion into iron substituted Na1+xTi2−xFex(PO4)3. J Power Sources 252:208–213
Nakamura E, Kondo A, Matsuoka M, Kozawa T, Naito M, Koga H, Iba H (2016) Preparation of LiCoO2/Li1.3Al0.3Ti1.7(PO4)3 composite cathode granule for all-solid-state lithium-ion batteries by simple mechanical method. Adv Powder Technol 27:825–829
Pan M, Lin X, Zhou Z (2011) Electrochemical performance of LiFePO4/C doped with F synthesized by carbothermal reduction method using NH4F as dopant. J Solid State Electrochem 16:1615–1621
Pang G, Yuan C, Nie P, Ding B, Zhu J, Zhang X (2014) Synthesis of NASICON-type structured NaTi2(PO4)3-graphene nanocomposite as an anode for aqueous rechargeable Na-ion batteries. Nanoscale 6:6328–6334
Wu X, Cao Y, Ai X, Qian J, Yang H (2013) A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3-Na2NiFe(CN)6 intercalation chemistry. Electrochem Commun 31:145–148
Zhu Q, Wang M, Nan B, Shi H, Zhang X, Deng Y, Wang L, Chen Q, Lu Z (2017) Core/shell nanostructured Na3V2(PO4)3/C/TiO2 composite nanofibers as a stable anode for sodium-ion batteries. J Power Sources 362:147–159
Xu C, Xu Y, Tang C, Wei Q, Meng J, Huang L, Zhou L, Zhang G, He L, Mai L (2016) Carbon-coated hierarchical NaTi2(PO4)3 mesoporous microflowers with superior sodium storage performance. Nano Energy 28:224–231
Wang H, Zhang H, Cheng Y, Feng K, Li X, Zhang H (2017) Rational design and synthesis of LiTi2(PO4)3-xFx anode materials for high-performance aqueous lithium ion batteries. J Mater Chem A 5:593–599
He X, Sun Z, Zou Q, Wu L, Jiang J (2019) Electrochemical behavior of Co(II) reduction for preparing nanocrystalline Co catalyst for hydrogen evolution reaction from 1-ethyl-3-methylimidazolium bisulfate and ethylene glycol system. J Electrochem Soc 166:D57–D64
Liu Z, An Y, Pang G, Dong S, Xu C, Mi C, Zhang X (2018) TiN modified NaTi2(PO4)3 as an anode material for aqueous sodium ion batteries. Chem Eng J 353:814–823