Melatonin ngăn ngừa tổn thương do thiếu oxy tuần hoàn mãn tính thông qua việc kích thích tự thực bào trung gian sirtuin 1 ở gan nhiễm mỡ của chuột

Jie Ren1, Meng Jin1, Zhen-Xi You1, Miao Luo1, Huaizhi Yin1, Guang-cai Li1, Huiguo Liu1
1Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China

Tóm tắt

Tóm tắt Đặt vấn đề Gan nhiễm mỡ đôi khi dẫn đến viêm gan do không do rượu (NASH) có liên quan đến ngưng thở khi ngủ tắc nghẽn (OSA). Nhiều nghiên cứu đã chỉ ra rằng tự thực bào có tác dụng bảo vệ đối với tổn thương gan do nhiều bệnh khác nhau và melatonin cho thấy có tính chất bảo vệ gan. Tuy nhiên, cơ chế gây tổn thương gan bởi thiếu oxy tuần hoàn mãn tính (CIH) và tác động của melatonin trong việc điều chỉnh tổn thương gan vẫn chưa rõ ràng. Mục đích Nghiên cứu này nhằm đánh giá vai trò của CIH trong tiến triển viêm gan nhiễm mỡ và chức năng điều chỉnh của melatonin đối với độ nhạy cảm của gan nhiễm mỡ với tổn thương do CIH, tập trung chủ yếu vào tín hiệu tự thực bào. Phương pháp Mô hình chuột béo phì do chế độ ăn nhiều chất béo (FD) được áp dụng các sự kiện thiếu oxy/normoxia trong khoảng 8 giờ mỗi ngày bằng cách sử dụng một tác nhân kích thích tự thực bào, rapamycin, hoặc một chất ức chế, 3-methyladenine (3-MA), và SRT1720, một tác nhân kích hoạt sirtuin 1 (SIRT1), hoặc sirtinol, một chất ức chế SIRT1, có hoặc không có melatonin trong tổng cộng sáu tuần liên tiếp, sau đó đánh giá sự biểu hiện của các gen liên quan đến tự thực bào và hoạt động của aminotransferase huyết thanh cũng như đánh giá hình thái học mô học của mô. Kết quả Cả FD và CIH riêng lẻ không gây ra tổn thương gan đáng kể; tuy nhiên, sự kết hợp đã tạo ra hoạt động aminotransferase huyết thanh cao hơn và những thay đổi mô học nghiêm trọng hơn, kèm theo sự giảm hoạt động tự thực bào. Melatonin đã ức chế đáng kể tổn thương gan do FD/CIH gây ra bằng cách tăng cường các tự thực bào. Ngược lại, sự ức chế SIRT1 dẫn đến sự giảm biểu hiện của các gen liên quan đến tự thực bào do melatonin kích thích cũng như giảm tác dụng bảo vệ của nó đối với tổn thương gan do FD/CIH gây ra. Kết luận Các kết quả này gợi ý rằng melatonin có thể cải thiện tổn thương tế bào gan do FD/CIH gây ra bằng cách kích hoạt tín hiệu tự thực bào trung gian SIRT1.

Từ khóa


Tài liệu tham khảo

Garg R, Singh A, Prasad R, Saheer S, Jabeed P, Verma R (2012) A comparative study on the clinical and polysomnographic pattern of obstructive sleep apnea among obese and non-obese subjects. Ann Thorac Med 7(1):26–30. https://doi.org/10.4103/1817-1737.91561

Young T, Palta M, Dempsey J, Skatrud J, Weber S, Badr S (1993) The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med 328(17):1230–1235. https://doi.org/10.1056/nejm199304293281704

Bellentani S, Saccoccio G, Masutti F, Croce LS, Brandi G, Sasso F, Cristanini G, Tiribelli C (2000) Prevalence of and risk factors for hepatic steatosis in Northern Italy. Ann Intern Med 132(2):112–117

Braillon A, Capron JP, Herve MA, Degott C, Quenum C (1985) Liver in obesity. Gut 26(2):133–139

Bacon BR, Farahvash MJ, Janney CG, Neuschwander-Tetri BA (1994) Nonalcoholic steatohepatitis: an expanded clinical entity. Gastroenterology 107(4):1103–1109

Savransky V, Bevans S, Nanayakkara A, Li J, Smith PL, Torbenson MS, Polotsky VY (2007) Chronic intermittent hypoxia causes hepatitis in a mouse model of diet-induced fatty liver. Am J Physiol Gastrointest Liver Physiol 293(4):G871–G877. https://doi.org/10.1152/ajpgi.00145.2007

Tatsumi K, Saibara T (2005) Effects of obstructive sleep apnea syndrome on hepatic steatosis and nonalcoholic steatohepatitis. Hepatol Res 33(2):100–104. https://doi.org/10.1016/j.hepres.2005.09.014

Musso G, Cassader M, Olivetti C, Rosina F, Carbone G, Gambino R (2013) Association of obstructive sleep apnoea with the presence and severity of non-alcoholic fatty liver disease. A systematic review and meta-analysis. Obes Rev 14(5):417–431. https://doi.org/10.1111/obr.12020

Tanne F, Gagnadoux F, Chazouilleres O, Fleury B, Wendum D, Lasnier E, Lebeau B, Poupon R, Serfaty L (2005) Chronic liver injury during obstructive sleep apnea. Hepatology 41(6):1290–1296. https://doi.org/10.1002/hep.20725

Ding W, Zhang Q, Dong Y, Ding N, Huang H, Zhu X, Hutchinson S, Gao X, Zhang X (2016) Adiponectin protects the rats liver against chronic intermittent hypoxia induced injury through AMP-activated protein kinase pathway. Sci Rep 6:34151. https://doi.org/10.1038/srep34151

Browning JD, Horton JD (2004) Molecular mediators of hepatic steatosis and liver injury. J Clin Invest 114(2):147–152. https://doi.org/10.1172/jci22422

Khader A, Yang WL, Godwin A, Prince JM, Nicastro JM, Coppa GF, Wang P (2016) Sirtuin 1 stimulation attenuates ischemic liver injury and enhances mitochondrial recovery and autophagy. Crit Care Med 44(8):e651–e663. https://doi.org/10.1097/ccm.0000000000001637

Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM, Czaja MJ (2009) Autophagy regulates lipid metabolism. Nature 458(7242):1131–1135. https://doi.org/10.1038/nature07976

Hou X, Xu S, Maitland-Toolan KA, Sato K, Jiang B, Ido Y, Lan F, Walsh K, Wierzbicki M, Verbeuren TJ, Cohen RA, Zang M (2008) SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J Biol Chem 283(29):20015–20026. https://doi.org/10.1074/jbc.M802187200

Finkel T, Deng CX, Mostoslavsky R (2009) Recent progress in the biology and physiology of sirtuins. Nature 460(7255):587–591. https://doi.org/10.1038/nature08197

Jiang Q, Hao R, Wang W, Gao H, Wang C (2016) SIRT1/Atg5/autophagy are involved in the antiatherosclerosis effects of ursolic acid. Mol Cell Biochem 420(1–2):171–184. https://doi.org/10.1007/s11010-016-2787-x

Hao Y, Lu Q, Yang G, Ma A (2016) Lin28a protects against postinfarction myocardial remodeling and dysfunction through Sirt1 activation and autophagy enhancement. Biochem Biophys Res Commun 479(4):833–840. https://doi.org/10.1016/j.bbrc.2016.09.122

Liu A, Fang H, Wei W, Dirsch O, Dahmen U (2014) Ischemic preconditioning protects against liver ischemia/reperfusion injury via heme oxygenase-1-mediated autophagy. Crit Care Med 42(12):e762–e771. https://doi.org/10.1097/ccm.0000000000000659

Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin L (2016) Melatonin as an antioxidant: under promises but over delivers. J Pineal Res 61(3):253–278. https://doi.org/10.1111/jpi.12360

Tan DX, Hardeland R, Back K, Manchester LC, Alatorre-Jimenez MA, Reiter RJ (2016) On the significance of an alternate pathway of melatonin synthesis via 5-methoxytryptamine: comparisons across species. J Pineal Res 61(1):27–40. https://doi.org/10.1111/jpi.12336

Manchester LC, Coto-Montes A, Boga JA, Andersen LP, Zhou Z, Galano A, Vriend J, Tan DX, Reiter RJ (2015) Melatonin: an ancient molecule that makes oxygen metabolically tolerable. J Pineal Res 59(4):403–419. https://doi.org/10.1111/jpi.12267

Ebaid H, Bashandy SA, Alhazza IM, Rady A, El-Shehry S (2013) Folic acid and melatonin ameliorate carbon tetrachloride-induced hepatic injury, oxidative stress and inflammation in rats. Nutr Metab (Lond) 10(1):20. https://doi.org/10.1186/1743-7075-10-20

Tunon MJ, San Miguel B, Crespo I, Jorquera F, Santamaria E, Alvarez M, Prieto J, Gonzalez-Gallego J (2011) Melatonin attenuates apoptotic liver damage in fulminant hepatic failure induced by the rabbit hemorrhagic disease virus. J Pineal Res 50(1):38–45. https://doi.org/10.1111/j.1600-079X.2010.00807.x

Ordonez R, Fernandez A, Prieto-Dominguez N, Martinez L, Garcia-Ruiz C, Fernandez-Checa JC, Mauriz JL, Gonzalez-Gallego J (2015) Ceramide metabolism regulates autophagy and apoptotic cell death induced by melatonin in liver cancer cells. J Pineal Res 59(2):178–189. https://doi.org/10.1111/jpi.12249

Kang JW, Koh EJ, Lee SM (2011) Melatonin protects liver against ischemia and reperfusion injury through inhibition of toll-like receptor signaling pathway. J Pineal Res 50(4):403–411. https://doi.org/10.1111/j.1600-079X.2011.00858.x

Carbajo-Pescador S, Martin-Renedo J, Garcia-Palomo A, Tunon MJ, Mauriz JL, Gonzalez-Gallego J (2009) Changes in the expression of melatonin receptors induced by melatonin treatment in hepatocarcinoma HepG2 cells. J Pineal Res 47(4):330–338. https://doi.org/10.1111/j.1600-079X.2009.00719.x

Pan M, Song YL, Xu JM, Gan HZ (2006) Melatonin ameliorates nonalcoholic fatty liver induced by high-fat diet in rats. J Pineal Res 41(1):79–84. https://doi.org/10.1111/j.1600-079X.2006.00346.x

Laliena A, San Miguel B, Crespo I, Alvarez M, Gonzalez-Gallego J, Tunon MJ (2012) Melatonin attenuates inflammation and promotes regeneration in rabbits with fulminant hepatitis of viral origin. J Pineal Res 53(3):270–278. https://doi.org/10.1111/j.1600-079X.2012.00995.x

Kang JW, Hong JM, Lee SM (2016) Melatonin enhances mitophagy and mitochondrial biogenesis in rats with carbon tetrachloride-induced liver fibrosis. J Pineal Res 60(4):383–393. https://doi.org/10.1111/jpi.12319

Suzuki S, Toledo-Pereyra LH, Rodriguez FJ, Cejalvo D (1993) Neutrophil infiltration as an important factor in liver ischemia and reperfusion injury. Modulating effects of FK506 and cyclosporine. Transplantation 55(6):1265–1272

Tanida I, Ueno T, Kominami E (2004) LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol 36(12):2503–2518. https://doi.org/10.1016/j.biocel.2004.05.009

Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goedde A, Toksoz E, Droege A, Krobitsch S, Korn B, Birchmeier W, Lehrach H, Wanker EE (2005) A human protein-protein interaction network: a resource for annotating the proteome. Cell 122(6):957–968. https://doi.org/10.1016/j.cell.2005.08.029

Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N, Ohsumi Y, Uchiyama Y, Kominami E, Tanaka K, Chiba T (2005) Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169(3):425–434. https://doi.org/10.1083/jcb.200412022

George J, Pera N, Phung N, Leclercq I, Yun Hou J, Farrell G (2003) Lipid peroxidation, stellate cell activation and hepatic fibrogenesis in a rat model of chronic steatohepatitis. J Hepatol 39(5):756–764

Piguet AC, Stroka D, Zimmermann A, Dufour JF (2009) Hypoxia aggravates non-alcoholic steatohepatitis in mice lacking hepatocellular PTEN. Clin Sci (Lond) 118(6):401–410. https://doi.org/10.1042/cs20090313

Feng SZ, Tian JL, Zhang Q, Wang H, Sun N, Zhang Y, Chen BY (2011) An experimental research on chronic intermittent hypoxia leading to liver injury. Sleep Breath 15(3):493–502. https://doi.org/10.1007/s11325-010-0370-3

Aron-Wisnewsky J, Minville C, Tordjman J, Levy P, Bouillot JL, Basdevant A, Bedossa P, Clement K, Pepin JL (2012) Chronic intermittent hypoxia is a major trigger for non-alcoholic fatty liver disease in morbid obese. J Hepatol 56(1):225–233. https://doi.org/10.1016/j.jhep.2011.04.022

Chin K, Nakamura T, Takahashi K, Sumi K, Ogawa Y, Masuzaki H, Muro S, Hattori N, Matsumoto H, Niimi A, Chiba T, Nakao K, Mishima M, Ohi M, Nakamura T (2003) Effects of obstructive sleep apnea syndrome on serum aminotransferase levels in obese patients. Am J Med 114(5):370–376

Norman D, Bardwell WA, Arosemena F, Nelesen R, Mills PJ, Loredo JS, Lavine JE, Dimsdale JE (2008) Serum aminotransferase levels are associated with markers of hypoxia in patients with obstructive sleep apnea. Sleep 31(1):121–126

Day CP, James OF (1998) Steatohepatitis: a tale of two “hits”? Gastroenterology 114(4):842–845

Day CP (2002) Non-alcoholic steatohepatitis (NASH): where are we now and where are we going? Gut 50(5):585–588

Lavie L (2009) Oxidative stress--a unifying paradigm in obstructive sleep apnea and comorbidities. Prog Cardiovasc Dis 51(4):303–312. https://doi.org/10.1016/j.pcad.2008.08.003

Yang Z, Zhong L, Zhong S, Xian R, Yuan B (2015) Hypoxia induces microglia autophagy and neural inflammation injury in focal cerebral ischemia model. Exp Mol Pathol 98(2):219–224. https://doi.org/10.1016/j.yexmp.2015.02.003

Martinez-Lopez N, Singh R (2015) Autophagy and lipid droplets in the liver. Annu Rev Nutr 35:215–237. https://doi.org/10.1146/annurev-nutr-071813-105336

Bjorkoy G, Lamark T, Pankiv S, Overvatn A, Brech A, Johansen T (2009) Monitoring autophagic degradation of p62/SQSTM1. Methods Enzymol 452:181–197. https://doi.org/10.1016/s0076-6879(08)03612-4

Wang JH, Behrns KE, Leeuwenburgh C, Kim JS (2012) Critical role of autophage in ischemia/reperfusion injury to aged livers. Autophagy 8(1):140–141. https://doi.org/10.4161/auto.8.1.18391

Hsu JT, Kuo CJ, Chen TH, Wang F, Lin CJ, Yeh TS, Hwang TL, Jan YY (2012) Melatonin prevents hemorrhagic shock-induced liver injury in rats through an Akt-dependent HO-1 pathway. J Pineal Res 53(4):410–416. https://doi.org/10.1111/j.1600-079X.2012.01011.x

Yun SP, Han YS, Lee JH, Kim SM, Lee SH (2018) Melatonin rescues mesenchymal stem cells from senescence induced by the uremic toxin p-Cresol via inhibiting mTOR-dependent autophagy. Biomol Ther (Seoul) 26(4):389–398. https://doi.org/10.4062/biomolther.2017.071

Sagrillo-Fagundes L, Assuncao Salustiano EM, Ruano R, Markus RP, Vaillancourt C (2018) Melatonin modulates autophagy and inflammation protecting human placental trophoblast from hypoxia/reoxygenation. J Pineal Res:e12520. https://doi.org/10.1111/jpi.12520

Min HK, Kapoor A, Fuchs M, Mirshahi F, Zhou H, Maher J, Kellum J, Warnick R, Contos MJ, Sanyal AJ (2012) Increased hepatic synthesis and dysregulation of cholesterol metabolism is associated with the severity of nonalcoholic fatty liver disease. Cell Metab 15(5):665–674. https://doi.org/10.1016/j.cmet.2012.04.004

Yin H, Hu M, Liang X, Ajmo JM, Li X, Bataller R, Odena G, Stevens SM Jr, You M (2014) Deletion of SIRT1 from hepatocytes in mice disrupts lipin-1 signaling and aggravates alcoholic fatty liver. Gastroenterology 146(3):801–811. https://doi.org/10.1053/j.gastro.2013.11.008

Lee IH, Cao L, Mostoslavsky R, Lombard DB, Liu J, Bruns NE, Tsokos M, Alt FW, Finkel T (2008) A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci U S A 105(9):3374–3379. https://doi.org/10.1073/pnas.0712145105

Huang R, Xu Y, Wan W, Shou X, Qian J, You Z, Liu B, Chang C, Zhou T, Lippincott-Schwartz J, Liu W (2015) Deacetylation of nuclear LC3 drives autophagy initiation under starvation. Mol Cell 57(3):456–466. https://doi.org/10.1016/j.molcel.2014.12.013