Melanin-based structural coloration of birds and its biomimetic applications
Tóm tắt
Melanin has been a widely researched pigment by scientists for decades as it is undoubtedly the most ubiquitous and ancient pigment found in nature. Melanin plays very significant roles in structural plumage colors in birds: it has visible light-absorbing capabilities, and nanoscale structures can be formed by self-assembling melanin granules. Herein, we review recent progress on melanin-based structural coloration research. We hope that this review will provide current understanding of melanin’s structural and optical properties, natural coloration mechanisms, and biomimetic methods to implement artificial melanin-based structural colors.
Từ khóa
Tài liệu tham khảo
L.J.I. Auber, The distribution of structural colours and unusual pigments in the class. Aves. 99(3), 463–476 (1957)
F. Bolzoni, S. Giraudo, L. Lopiano, B. Bergamasco, M. Fasano, P.R. Crippa, Magnetic investigations of human mesencephalic neuromelanin. Biochimica Et Biophysica Acta-Molecular Basis of Disease 1586(2), 210–218 (2002). https://doi.org/10.1016/S0925-4439(01)00099-0
S.L. Brusatte, J.K. O'Connor, E.D. Jarvis, The origin and diversification of birds. Curr. Biol. 25(19), R888–R898 (2015). https://doi.org/10.1016/j.cub.2015.08.003
C.T. Chen, C. Chuang, J.S. Cao, V. Ball, D. Ruch, M.J. Buehler, Excitonic effects from geometric order and disorder explain broadband optical absorption in eumelanin. Nat. Commun. 5 (2014). https://doi.org/10.1038/ncomms4859
Cheng, J., Moss, S. C., & Eisner, M. (1994). X-Ray Characterization of Melanins .2. Pigment Cell Res., 7(4), 263–273. https://doi.org/10.1111/j.1600-0749.1994.tb00061.x
L. D'Alba, M. Meadows, R. Maia, J.S. Yeo, M. Manceau, M. Shawkey, Morphogenesis of iridescent feathers in Anna's hummingbird Calypte anna. Integrative and comparative biology, icab123. (2021). https://doi.org/10.1093/icb/icab123
L. D'Alba, M.D. Shawkey, Melanosomes: Biogenesis, properties, and evolution of an ancient organelle. Physiol. Rev. 99(1), 1–19 (2019). https://doi.org/10.1152/physrev.00059.2017
M. d'Ischia, A. Napolitano, V. Ball, C.T. Chen, M.J. Buehler, Polydopamine and Eumelanin: From structure-property relationships to a unified tailoring strategy. Acc. Chem. Res. 47(12), 3541–3550 (2014). https://doi.org/10.1021/ar500273y
d'Ischia, M., Napolitano, A., Pezzella, A., Meredith, P., & Buehler, M. (2020). Melanin Biopolymers: Tailoring Chemical Complexity for Materials Design. Angewandte Chemie-International Edition. https://doi.org/10.1002/anie.201914276
M. d'Ischia, K. Wakamatsu, A. Napolitano, S. Briganti, J.C. Garcia-Borron, D. Kovacs, S. Ito, Melanins and melanogenesis: Methods, standards, protocols. Pigment Cell Melanoma Research 26(5), 616–633 (2013). https://doi.org/10.1111/pcmr.12121
H. Durrer, Villiger, W. J. Z. f. Z. u. m. A., Iridescent colours of. Chrysococcyx cupreus. 109(3), 407–413 (1970)
Eliason, C. M., Bitton, P. P., & Shawkey, M. D. (2013). How hollow melanosomes affect iridescent colour production in birds. Proceedings of the Royal Society B-biological sciences, 280(1767). Doi: ARTN 20131505 10.1098/rspb.2013.1505
C.M. Eliason, R. Maia, J.L. Parra, M.D. Shawkey, Signal evolution and morphological complexity in hummingbirds (Aves: Trochilidae). Evolution 74(2), 447–458 (2020). https://doi.org/10.1111/evo.13893
C.M. Eliason, R. Maia, M.D. Shawkey, Modular color evolution facilitated by a complex nanostructure in birds. Evolution 69(2), 357–367 (2015). https://doi.org/10.1111/evo.12575
J.D. Forster, H. Noh, S.F. Liew, V. Saranathan, C.F. Schreck, L. Yang, E.R. Dufresne, Biomimetic isotropic nanostructures for structural coloration. Adv. Mater. 22(26–27), 2939–2944 (2010). https://doi.org/10.1002/adma.200903693
H. Fudouzi, T. Sawada, Photonic rubber sheets with tunable color by elastic deformation. Langmuir 22(3), 1365–1368 (2006). https://doi.org/10.1021/la0521037
H. Fudouzi, Y.N. Xia, Photonic papers and inks: Color writing with colorless materials. Adv. Mater. 15(11), 892–896 (2003). https://doi.org/10.1002/adma.200304795
Galeb, H. A., Wilkinson, E. L., Stowell, A. F., Lin, H. Y., Murphy, S. T., Martin-Hirsch, P. L., Hardy, J. G. (2021). Melanins as sustainable resources for advanced biotechnological applications. Global challenges, 5(2). Doi: ARTN 2000102. 10.1002/gch2.202000102
D.T. Ge, L.L. Yang, G.X. Wu, S. Yang, Angle-independent colours from spray coated quasi-amorphous arrays of nanoparticles: Combination of constructive interference and Rayleigh scattering. J. Mater. Chem. C 2(22), 4395–4400 (2014). https://doi.org/10.1039/c4tc00063c
Greenewalt, C. H., Brandt, W., & Friel, D. D. (1960). Iridescent colors of hummingbird feathers. 50(10), 1005-1013
N.S. Hart, M. Vorobyev, Modelling oil droplet absorption spectra and spectral sensitivities of bird cone photoreceptors. Journal of Comparative Physiology a-Neuroethology Sensory Neural and Behavioral Physiology 191(4), 381–392 (2005). https://doi.org/10.1007/s00359-004-0595-3
Hill, G. E., McGraw, K. J.. (2006). Bird coloration: Mechanisms and measurements (Vol. 1): Harvard University press
G.B. Huang, Y.B. Yin, Z. Pan, M.G. Chen, L. Zhang, Y. Liu, J.P. Gao, Fabrication of 3D photonic crystals from chitosan that are responsive to organic solvents. Biomacromolecules 15(12), 4396–4402 (2014). https://doi.org/10.1021/bm501374t
S. Ito, K. Wakamatsu, Quantitative analysis of eumelanin and pheomelanin in humans, mice, and other animals: A comparative review. Pigment cell research, 16(5), 523-531. Doi. (2003). https://doi.org/10.1034/j.1600-0749.2003.00072.x
W. Jetz, G.H. Thomas, J.B. Joy, K. Hartmann, A.O. Mooers, The global diversity of birds in space and time. Nature 491(7424), 444–448 (2012). https://doi.org/10.1038/nature11631
K. Katagiri, K. Uemura, R. Uesugi, K. Inumaru, T. Seki, Y. Takeoka, Structurally colored coating films with tunable iridescence fabricated via cathodic electrophoretic deposition of silica particles. RSC Adv. 8(20), 10776–10784 (2018). https://doi.org/10.1039/c8ra01215f
S.H. Kim, S. Magkiriadou, D.K. Rhee, D.S. Lee, P.J. Yoo, V.N. Manoharan, G.R. Yi, Inverse photonic glasses by packing Bidisperse hollow microspheres with uniform cores. ACS Appl. Mater. Interfaces 9(28), 24155–24160 (2017). https://doi.org/10.1021/acsami.7b02098
King, T. C. (2007). Elsevier's integrated pathology, 1st ed., chapter 3—Tissue homeostasis, damage, and repair. 59-88
S. Kinoshita, Structural Colors in the Realm of Nature: World Scientific (2008). isbn:978-981-270-783-3
S. Kinoshita, S. Yoshioka, J. Miyazaki, Physics of structural colors. Rep. Prog. Phys. 71(7) (2008). https://doi.org/10.1088/0034-4885/71/7/076401
M. Kohri, Artificial melanin particles: New building blocks for biomimetic structural coloration. Polym. J. 51(11), 1127–1135 (2019). https://doi.org/10.1038/s41428-019-0231-2
M. Kohri, Progress in polydopamine-based melanin mimetic materials for structural color generation. Sci. Technol. Adv. Mater. 21(1), 833–848 (2020). https://doi.org/10.1080/14686996.2020.1852057
M. Kohri, Y. Nannichi, T. Taniguchi, K. Kishikawa, Biomimetic non-iridescent structural color materials from polydopamine black particles that mimic melanin granules. J. Mater. Chem. C 3(4), 720–724 (2015). https://doi.org/10.1039/c4tc02383h
M. Kohri, Y. Tamai, A. Kawamura, K. Jido, M. Yamamoto, T. Taniguchi, D. Nagao, Ellipsoidal artificial melanin particles as building blocks for biomimetic structural coloration. Langmuir 35(16), 5574–5580 (2019). https://doi.org/10.1021/acs.langmuir.9b00400
M. Kolle, P.M. Salgard-Cunha, M.R.J. Scherer, F.M. Huang, P. Vukusic, S. Mahajan, et al., Mimicking the colourful wing scale structure of the Papilio blumei butterfly. Nat. Nanotechnol. 5(7), 511–515 (2010). https://doi.org/10.1038/Nnano.2010.101
M.F. Land, The physics and biology of animal reflectors. Prog. Biophys. Mol. Biol. 24, 75–106 (1972)
F.H. Li, B.T. Tang, S.F. Zhang, Iridescent structural colors from self-assembled polymer opal of polythiourethane microspheres. Dyes Pigments 142, 371–378 (2017). https://doi.org/10.1016/j.dyepig.2017.03.059
Q.G. Li, K.Q. Gao, Q.J. Meng, J.A. Clarke, M.D. Shawkey, L. D'Alba, J. Vinther, Reconstruction of microraptor and the evolution of iridescent plumage. Science 335(6073), 1215–1219 (2012). https://doi.org/10.1126/science.1213780
Q.G. Li, K.Q. Gao, J. Vinther, M.D. Shawkey, J.A. Clarke, L. D'Alba, R.O. Prum, Plumage color patterns of an extinct dinosaur. Science 327(5971), 1369–1372 (2010). https://doi.org/10.1126/science.1186290
Y. Liu, L. Hong, K. Wakamatsu, S. Ito, B. Adhyaru, C.Y. Cheng, J.D. Simon, Comparison of structural and chemical properties of black and red human hair melanosomes. Photochem. Photobiol. 81(1), 135–144 (2005). https://doi.org/10.1562/2004-08-03-Ra-259.1
I.J. Lovette, Conservation: Evolutionary values for all 10,000 birds. Curr. Biol. 24(10), R401–R402 (2014). https://doi.org/10.1016/j.cub.2014.04.005
R. Maia, L. D'Alba, M.D. Shawkey, What makes a feather shine? A nanostructural basis for glossy black colours in feathers. Proceedings of the Royal Society B-Biological Sciences 278(1714), 1973–1980 (2011). https://doi.org/10.1098/rspb.2010.1637
R. Maia, R.H.F. Macedo, M.D. Shawkey, Nanostructural self-assembly of iridescent feather barbules through depletion attraction of melanosomes during keratinization. J. R. Soc. Interface 9(69), 734–743 (2012). https://doi.org/10.1098/rsif.2011.0456
R. Maia, D.R. Rubenstein, M.D. Shawkey, Key ornamental innovations facilitate diversification in an avian radiation. Proc. Natl. Acad. Sci. U. S. A. 110(26), 10687–10692 (2013). https://doi.org/10.1073/pnas.1220784110
J.E. McGinness, Mobility gaps: A mechanism for band gaps in melanins. Science 177(4052), 896–897 (1972). https://doi.org/10.1126/science.177.4052.896
J.E. McGinness, P. Corry, P. Proctor, Amorphous semiconductor switching in melanins. Science 183(4127), 853–855 (1974). https://doi.org/10.1126/science.183.4127.853
P. Meredith, B.J. Powell, J. Riesz, S.P. Nighswander-Rempel, M.R. Pederson, E.G. Moore, Towards structure-property-function relationships for eumelanin. Soft Matter 2(1), 37–44 (2006). https://doi.org/10.1039/b511922g
R. Micillo, L. Panzella, M. Iacomino, G. Prampolini, I. Cacelli, A. Ferretti, M. d'Ischia, Eumelanin broadband absorption develops from aggregation-modulated chromophore interactions under structural and redox control. Scientific Reports, 7 (2017). https://doi.org/10.1038/srep41532
A. Miserez, T. Schneberk, C.J. Sun, F.W. Zok, J.H. Waite, The transition from stiff to compliant materials in squid beaks. Science 319(5871), 1816–1819 (2008). https://doi.org/10.1126/science.1154117
H. Miyazaki, M. Hase, H.T. Miyazaki, Y. Kurokawa, N. Shinya, Photonic material for designing arbitrarily shaped waveguides in two dimensions. Physical Review B 67(23), 235109 (2003). https://doi.org/10.1103/PhysRevB.67.235109
L. Naysmith, K. Waterston, T. Ha, N. Flanagan, Y. Bisset, A. Ray, J.L. Rees, Quantitative measures of the effect of the melanocortin 1 receptor on human pigmentary status. J. Investig. Dermatol. 122(2), 423–428 (2004). https://doi.org/10.1046/j.0022-202X.2004.22221.x
R.A. Nicolaus, Melanins (Hermann, Paris, 1968)
J.D. Nosanchuk, A. Casadevall, The contribution of melanin to microbial pathogenesis. Cell. Microbiol. 5(4), 203–223 (2003). https://doi.org/10.1046/j.1462-5814.2003.00268.x
S. Pancharatnam, Generalized theory of interference and its applications. Proceedings of the Indian Academy of Sciences-Section A 44(6), 398–417 (1956). https://doi.org/10.1007/BF03046095
M. Piech, J.Y. Walz, Depletion interactions produced by nonadsorbing charged and uncharged spheroids. J. Colloid Interface Sci. 232(1), 86–101 (2000). https://doi.org/10.1006/jcis.2000.7194
G. Prota, Progress in the chemistry of Melanins and related metabolites. Med. Res. Rev. 8(4), 525–556 (1988). https://doi.org/10.1002/med.2610080405
G. Prota, Melanins and melanogenesis, 1–290 (Academic Press, New York, 1992)
R.O. Prum, T. Quinn, R.H. Torres, Anatomically diverse butterfly scales all produce structural colours by coherent scattering. J. Exp. Biol. 209(4), 748–765 (2006). https://doi.org/10.1242/jeb.02051
R.O. Prum, R.H. Torres, A Fourier tool for the analysis of coherent light scattering by bio-optical nanostructures. Integr. Comp. Biol. 43(4), 591–602 (2003). https://doi.org/10.1093/icb/43.4.591
R. Riedler, C. Pesme, J. Druzik, M. Gleeson, E. Pearlstein, A review of color-producing mechanisms in feathers and their influence on preventive conservation strategies. J. Am. Inst. Conserv. 53(1), 44–65 (2014). https://doi.org/10.1179/1945233013y.0000000020
D. Sakurai, M. Goda, Y. Kohmura, T. Horie, H. Iwamoto, H. Ohtsuki, I. Tsuda, The role of pigment cells in the brain of ascidian larva. J. Comp. Neurol. 475(1), 70–82 (2004). https://doi.org/10.1002/cne.20142
M.D. Shawkey, L. D'Alba, M. Xiao, M. Schutte, R. Buchholz, Ontogeny of an iridescent nanostructure composed of hollow Melanosomes. J. Morphol. 276(4), 378–384 (2015). https://doi.org/10.1002/jmor.20347
M.D. Shawkey, G.E. Hill, Significance of a basal melanin layer to production of non-iridescent structural plumage color: Evidence from an amelanotic Steller's jay (Cyanocitta stelleri). J. Exp. Biol. 209(7), 1245–1250 (2006). https://doi.org/10.1242/jeb.02115
J.D. Simon, L. Hong, D.N. Peles, Insights into Melanosomes and melanin from some interesting spatial and temporal properties. J. Phys. Chem. B 112(42), 13201–13217 (2008). https://doi.org/10.1021/jp804248h
J.D. Simon, D. Peles, K. Wakamatsu, S. Ito, Current challenges in understanding melanogenesis: Bridging chemistry, biological control, morphology, and function. Pigment Cell & Melanoma Research 22(5), 563–579 (2009). https://doi.org/10.1111/j.1755-148X.2009.00610.x
J.D. Simon, D.N. Peles, The red and the black. Acc. Chem. Res. 43(11), 1452–1460 (2010). https://doi.org/10.1021/ar100079y
V. Singh, A. Dong, J.S. Gero, Developing a computational model to understand the contributions of social learning modes to task coordination in teams. Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing 27(1), 3–17 (2013). https://doi.org/10.1017/S0890060412000340
S.E. Skipetrov, I.M. Sokolov, Absence of Anderson localization of light in a random ensemble of point scatterers. Phys. Rev. Lett. 112(2), 023905 (2014). https://doi.org/10.1103/PhysRevLett.112.023905
D.G. Stavenga, H.L. Leertouwer, T. Hariyama, H.A. De Raedt, B.D. Wilts, Sexual Dichromatism of the damselfly Calopteryx japonica caused by a melanin-chitin multilayer in the male wing veins. PLoS One 7(11) (2012). https://doi.org/10.1371/journal.pone.0049743
D.G. Stavenga, H.L. Leertouwer, N.J. Marshall, D. Osorio, Dramatic colour changes in a bird of paradise caused by uniquely structured breast feather barbules. Proceedings of the Royal Society B-Biological Sciences 278(1715), 2098–2104 (2011). https://doi.org/10.1098/rspb.2010.2293
J.Y. Sun, B. Bhushan, J. Tong, Structural coloration in nature. RSC Adv. 3(35), 14862–14889 (2013). https://doi.org/10.1039/c3ra41096j
Y. Takeoka, Angle-independent structural coloured amorphous arrays. J. Mater. Chem. 22(44), 23299–23309 (2012). https://doi.org/10.1039/c2jm33643j
Y. Takeoka, Environment and human friendly colored materials prepared using black and white components. Chem. Commun. 54(39), 4905–4914 (2018). https://doi.org/10.1039/c8cc01894d
Y. Takeoka, S. Yoshioka, A. Takano, S. Arai, K. Nueangnoraj, H. Nishihara, T. Seki, Production of colored pigments with amorphous arrays of black and white colloidal particles. Angewandte Chemie-International Edition 52(28), 7261–7265 (2013). https://doi.org/10.1002/anie.201301321
C. Tedore, D.E. Nilsson, Avian UV vision enhances leaf surface contrasts in forest environments. Nat. Commun. 10 (2019). https://doi.org/10.1038/s41467-018-08142-5
M.L. Tran, B.J. Powell, P. Meredith, Chemical and structural disorder in eumelanins: A possible explanation for broadband absorbance. Biophys. J. 90(3), 743–752 (2006). https://doi.org/10.1529/biophysj.105.069096
Y. Wang, L. Shang, G. Chen, L. Sun, X. Zhang, Y. Zhao, Bioinspired structural color patch with anisotropic surface adhesion. Sci. Adv. 6(4) (2020). https://doi.org/10.1126/sciadv.aax8258
A.A.R. Watt, J.P. Bothma, P. Meredith, The supramolecular structure of melanin. Soft Matter 5(19), 3754–3760 (2009). https://doi.org/10.1039/b902507c
M. Xiao, W. Chen, W.Y. Li, J.Z. Zhao, Y.L. Hong, Y. Nishiyama, A. Dhinojwala, Elucidation of the hierarchical structure of natural eumelanins. J. R. Soc. Interface 15(140) (2018). https://doi.org/10.1098/rsif.2018.0045
M. Xiao, Z.Y. Hu, Z. Wang, Y.W. Li, A.D. Tormo, N. Le Thomas, A. Dhinojwala, Bioinspired bright noniridescent photonic melanin supraballs. Sci. Adv. 3(9) (2017). https://doi.org/10.1126/sciadv.1701151
M. Xiao, Y. Li, J. Zhao, Z. Wang, M. Gao, N.C. Gianneschi, A. Dhinojwala, M.D. Shawkey, Stimuli-responsive structurally colored films from bioinspired synthetic melanin nanoparticles. Chem. Mater. 28(15), 5516–5521 (2016). https://doi.org/10.1021/acs.chemmater.6b02127
M. Xiao, Y.W. Li, M.C. Allen, D.D. Deheyn, X.J. Yue, J.Z. Zhao, A. Dhinojwala, Bio-inspired structural colors produced via self-assembly of synthetic melanin nanoparticles. ACS Nano 9(5), 5454–5460 (2015). https://doi.org/10.1021/acsnano.5b01298
M. Xiao, M.D. Shawkey, A. Dhinojwala, Bioinspired melanin-based optically active materials. Advanced Optical Materials 8(19) (2020). https://doi.org/10.1002/adom.202000932
S. Yoshioka, E. Nakamura, S. Kinoshita, Origin of two-color iridescence in rock dove's feather. J. Phys. Soc. Jpn. 76(1) (2007). https://doi.org/10.1143/Jpsj.76.013801
S. Yoshioka, Y. Takeoka, Production of Colourful pigments consisting of amorphous arrays of silica particles. Chemphyschem 15(11), 2209–2215 (2014). https://doi.org/10.1002/cphc.201402095
C. Zhang, B.H. Wu, Y. Du, M.Q. Ma, Z.K. Xu, Mussel-inspired polydopamine coatings for large-scale and angle-independent structural colors. J. Mater. Chem. C 5(16), 3898–3902 (2017). https://doi.org/10.1039/c7tc00530j
J. Zi, X.D. Yu, Y.Z. Li, X.H. Hu, C. Xu, X.J. Wang, R.T. Fu, Coloration strategies in peacock feathers. Proc. Natl. Acad. Sci. U. S. A. 100(22), 12576–12578 (2003). https://doi.org/10.1073/pnas.2133313100