Meixner Class of Non-commutative Generalized Stochastic Processes with Freely Independent Values II. The Generating Function

Springer Science and Business Media LLC - Tập 302 - Trang 425-451 - 2010
Marek Bożejko1, Eugene Lytvynov2
1Instytut Matematyczny, Uniwersytet Wrocławski, Wrocław, Poland
2Department of Mathematics, Swansea University, Swansea, U.K.

Tóm tắt

Let T be an underlying space with a non-atomic measure σ on it. In [Comm. Math. Phys. 292, 99–129 (2009)] the Meixner class of non-commutative generalized stochastic processes with freely independent values, $${\omega=(\omega(t))_{t\in T}}$$ , was characterized through the continuity of the corresponding orthogonal polynomials. In this paper, we derive a generating function for these orthogonal polynomials. The first question we have to answer is: What should serve as a generating function for a system of polynomials of infinitely many non-commuting variables? We construct a class of operator-valued functions $${Z=(Z(t))_{t\in T}}$$ such that Z(t) commutes with ω(s) for any $${s,t\in T}$$ . Then a generating function can be understood as $${G(Z,\omega)=\sum_{n=0}^\infty \int_{T^n}P^{(n)}(\omega(t_1),\dots,\omega(t_n))Z(t_1)\dots Z(t_n)}$$ $${\sigma(dt_1)\,\dots\,\sigma(dt_n)}$$ , where $${P^{(n)}(\omega(t_1),\dots,\omega(t_n))}$$ is (the kernel of the) n th orthogonal polynomial. We derive an explicit form of G(Z, ω), which has a resolvent form and resembles the generating function in the classical case, albeit it involves integrals of non-commuting operators. We finally discuss a related problem of the action of the annihilation operators $${\partial_t,t \in T}$$ . In contrast to the classical case, we prove that the operators ∂ t related to the free Gaussian and Poisson processes have a property of globality. This result is genuinely infinite-dimensional, since in one dimension one loses the notion of globality.

Tài liệu tham khảo

Anshelevich M.: Free martingale polynomials. J. Funct. Anal. 201, 228–261 (2003) Anshelevich M.: Free Meixner states. Commun. Math. Phys. 276, 863–899 (2007) Anshelevich M.: Orthogonal polynomials with a resolvent-type generating function. Trans. Amer. Math. Soc. 360, 4125–4143 (2008) Berezansky Y.M., Lytvynov E., Mierzejewski D.A.: The Jacobi field of a Lévy process. Ukrainian Math. J. 55, 853–858 (2003) Berezansky, Y.M., Sheftel, Z.G., Us, G.F.: Functional analysis. Vol. I, II. Basel: Birkhäuser Verlag, 1996 Bożejko M., Bryc W.: On a class of free Lévy laws related to a regression problem. J. Funct. Anal. 236, 59–77 (2006) Biane P., Speicher R.: Stochastic calculus with respect to free Brownian motion and analysis on Wigner space. Probab. Theory Related Fields 112, 373–409 (1998) Bożejko M., Demni N.: Generating functions of Cauchy–Stieltjes type for orthogonal polynomials. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 12, 91–98 (2009) Bożejko M., Leinert M., Speicher R.: Convolutions and limit theoerems for conditionally free random variables. Pacific J. Math. 175, 357–388 (1996) Bożejko M., Lytvynov E.: Meixner class of non-commutative generalized stochastic processes with freely independent values I. A characterization. Commun. Math. Phys. 292, 99–129 (2009) Chihara T.S.: An introduction to orthogonal polynomials. New York-London-Paris, Gordon and Breach Science Publishers (1978) Hudson R.L., Parthasarathy K.R.: Quantum Ito’s formula and stochastic evolutions. Commun. Math. Phys. 93, 301–323 (1984) Lytvynov E.: Polynomials of Meixner’s type in infinite dimensions—Jacobi fields and orthogonality measures. J. Funct. Anal. 200, 118–149 (2003) Lytvynov E.: Orthogonal decompositions for Lévy processes with an application to the gamma, Pascal, and Meixner processes. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 6, 73–102 (2003) Lytvynov E., Rodionova I.: Lowering and raising operators for the free Meixner class of orthogonal polynomials. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 12, 387–399 (2009) Meixner J.: Orthogonale Polynomsysteme mit einem besonderen Gestalt der erzeugenden Funktion. J. London Math. Soc. 9, 6–13 (1934) Parthasarathy K.R.: An introduction to quantum stochastic calculus. Birkhäuser Verlag, Basel (1992) Rodionova I.: Analysis connected with generating functions of exponential type in one and infinite dimensions. Methods Funct. Anal. Topology 11, 275–297 (2005) Saitoh N., Yoshida H.: The infinite divisibility and orthogonal polynomials with a constant recursion formula in free probability theory. Probab. Math. Statist. 21, 159–170 (2001) Yosida K.: Functional analysis. Springer-Verlag, Sixth edition. Berlin-New York (1980)