Meeting review: the Second Meeting on the Critical Assessment of Techniques for Protein Structure Prediction (CASP2), Asilomar, California, December 13–16, 1996

Folding and Design - Tập 2 - Trang R27-R42 - 1997
Roland L Dunbrack1, Dietlind L Gerloff1, Michael Bower1, Xiaowu Chen1, Olivier Lichtarge1, Fred E Cohen1
1Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, CA 94143-0450, USA

Tài liệu tham khảo

Moult, J. The ProStar Webpage. Center for Advanced Research in Biotechnology, University of Maryland. World Wide Web URL: http://prostar.carb.nist.gov/ Fischer, D. & Eisenberg, D. The UCLA-DOE Benchmark To Assess The Performance Of Fold Recognition Methods. University of California Los Angeles. World Wide Web URL: http://www.mbi.ucla.edu/people/frsvr/frsvr.html Hubbard, T., et al., & Bryant, S. Second Meeting on the Critical Assessment of Protein Structure Prediction. Center for Advanced Research in Biotechnology, University of Maryland. World Wide Web URL: http://iris4.carb.nist.gov/casp2/ Fidelis, K. Protein Structure Prediction Center. Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, Livermore, CA, USA. World Wide Web URL: http://PredictionCenter.llnl.gov/ Cardozo, 1995, Homology modeling by the internal coordinate mechanics (ICM) method, Proteins, 23, 403, 10.1002/prot.340230314 Šali, 1993, Comparative protein modelling by satisfaction of spatial restraints, J. Mol. Biol, 234, 779, 10.1006/jmbi.1993.1626 Taylor, 1989, Protein structure alignment, J. Mol. Biol, 208, 1, 10.1016/0022-2836(89)90084-3 Vriend, 1990, WHAT IF: a molecular modeling and drug design program, J. Mol. Graphics, 8, 52, 10.1016/0263-7855(90)80070-V Bruccoleri, 1987, Prediction of the folding of short polypeptide segments by uniform conformational sampling, Biopolymers, 26, 137, 10.1002/bip.360260114 Moult, 1986, An algorithm for determining the conformation of polypeptide segments in proteins by systematic search, Proteins, 1, 146, 10.1002/prot.340010207 Aszódi, 1995, Global fold determination from a small number of distance restraints, J. Mol. Biol, 251, 308, 10.1006/jmbi.1995.0436 Harrison, 1995, Analysis of six protein structures predicted by comparative modeling techniques, Proteins, 23, 463, 10.1002/prot.340230402 Ponder, 1987, Tertiary templates for proteins: use of packing criteria in the enumeration of allowed sequences for different structural classes, J. Mol. Biol, 193, 775, 10.1016/0022-2836(87)90358-5 Abagyan, 1994, Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins, J. Mol. Biol, 235, 983, 10.1006/jmbi.1994.1052 McGregor, 1987, Analysis of the relationship between side-chain conformation and secondary structure in globular proteins, J. Mol. Biol, 198, 295, 10.1016/0022-2836(87)90314-7 Schrauber, 1993, Rotamers: to be or not to be? An analysis of amino acid side-chain conformations in globular proteins, J. Mol. Biol, 230, 592, 10.1006/jmbi.1993.1172 Levitt, 1992, Accurate modeling of protein conformation by automatic segment matching, J. Mol. Biol, 226, 507, 10.1016/0022-2836(92)90964-L Chinea, 1995, The use of position-specific rotamers in model building by homology, Proteins, 23, 415, 10.1002/prot.340230315 Dunbrack, 1993, Backbone-dependent rotamer library for proteins: application to sidechain prediction, J. Mol. Biol, 230, 543, 10.1006/jmbi.1993.1170 Dunbrack, 1994, Conformational analysis of the backbone-dependent rotamer preferences of protein sidechains, Nat. Struct. Biol, 1, 334, 10.1038/nsb0594-334 Dunbrack, R.L., Jr. The backbone-dependent rotamer library webpage. University of California, San Francisco. World Wide Web URL: http://www.cmpharm.ucsf.edu/~dunbrack Bower, 1997, Homology modeling with a backbone-dependent rotamer library, J. Mol. Biol, 10.1006/jmbi.1997.0926 Bower, M., Cohen, F.E. & Dunbrack, R.L., Jr. (1997). SCWRL: a program for building sidechains onto protein backbones. University of California San Francisco. World Wide Web URL: http://www.cmpharm.ucsf.edu/~bower/scwrl.html Šali, A. MODELLER page at the Rockefeller University. Rockefeller University. World Wide Web URL: http://guitar.rockefeller.edu/modeller/modeller.html Holm, 1993, Protein structure comparison by alignment of distance matrices, J. Mol. Biol, 233, 123, 10.1006/jmbi.1993.1489 Bycroft, 1997, The solution structure of the S1 RNA binding domain: a member of an ancient nucleic acid-binding fold, Cell, 88, 235, 10.1016/S0092-8674(00)81844-9 Schindelin, 1993, Universal nucleic acid-binding domain revealed by crystal structure of the B. subtilis major cold-shock protein, Nature, 364, 164, 10.1038/364164a0 Rost, 1996, PHD: predicting one-dimensional protein structure by profile based neural networks, Methods Enzymol, 266, 525, 10.1016/S0076-6879(96)66033-9 Rost, B. & Sander, C. PredictProtein. European Molecular Biology Laboratory (EMBL), Heidelberg, Germany. World Wide Web URL: http://www.embl.heidelberg.de/predictprotein/ppDoPred.html Mehta, P., Heringa, J., Milpetz, F. & Argos, P. SSPRED: a service for secondary structure prediction of proteins. European Molecular Biology Laboratory, Heidelberg Germany. World Wide Web URL: http://www.embl-heidelberg.de/sspred/sspred_info.html Geourjon, C., Deléage, G. & Blanchet, C. Protein Sequence Analysis at IBCP. Institute of Biology and Chemistry of Proteins, Lyon, France. World Wide Web URL: http://www.ibcp.fr/mailserver.html Jones, 1992, A new approach to protein fold recognition, Nature, 358, 86, 10.1038/358086a0 Jones, 1995, Successful protein fold recognition by optimal sequence threading validated by rigorous blind testing, Proteins, 23, 387, 10.1002/prot.340230312 Fischer, 1996, Protein fold recognition using sequence-derived predictions, Protein Sci, 5, 947, 10.1002/pro.5560050516 Floeckner, 1995, Progress in fold recognition, Proteins, 23, 376, 10.1002/prot.340230311 Murzin, 1995, SCOP: a structural classification of proteins database for the investigation of sequences and structures, J. Mol. Biol, 247, 536, 10.1016/S0022-2836(05)80134-2 Defay, 1995, Evaluation of current techniques for ab initio structure prediction, Proteins, 23, 431, 10.1002/prot.340230317 Lesk, 1995, Systematic representation of protein folding patterns, J. Mol. Graphics, 13, 159, 10.1016/0263-7855(95)00037-7 Hubbard, T. CASP2: formats for submission of ab initio predictions. Centre for Protein Engineering, Cambridge, United Kingdom. World Wide Web URL: http://iris4.carb.nist.gov/casp2/ab-submission.html Jenny, 1994, Evaluating predictions of secondary structure in proteins, Biochem. Biophys. Res. Commun, 200, 149, 10.1006/bbrc.1994.1427 Rost, 1994, Redefining the goals of structure prediction, J. Mol. Biol, 235, 13, 10.1016/S0022-2836(05)80007-5 King, R.D. & Sternberg, M.J. DSC: discrimination of protein secondary structure class. Imperial Cancer Research Fund, London, United Kingdom. World Wide Web URL: http://bonsai.lif.icnet/bmm/dsc/dsc_read_align.html King, 1996, Identification and application of the concepts important for accurate and reliable protein secondary structure prediction, Protein Sci, 5, 2298, 10.1002/pro.5560051116 Yi, 1993, Protein secondary structure prediction using nearest-neighbor methods, J. Mol. Biol, 232, 1117, 10.1006/jmbi.1993.1464 Salomov, 1995, Prediction of protein secondary structure by combining nearest-neighbor algorithms and multiple sequence alignments, J. Mol. Biol, 247, 11, 10.1006/jmbi.1994.0116 Benner, 1995, The phospho-β-galactosidase and synaptotagmin predictions, Proteins, 23, 446, 10.1002/prot.340230318 Srinivasan, 1995, LINUS: a hierarchic procedure to predict the fold of a protein, Proteins, 22, 81, 10.1002/prot.340220202 Wigley, 1991, Crystal structure of an N-terminal fragment of the DNA gyrase B, Nature, 351, 624, 10.1038/351624a0 Ogihara, 1997, The crystal structure of the designed trimeric coiled coil coil-V(a)L(d): implications for engineering crystals and supramolecular assemblies, Protein Sci, 6, 80, 10.1002/pro.5560060109 Rarey, 1996, Placement of medium-sized molecular fragments into active sites of proteins, J. Cell Mol. Dynam, 10, 41 Rarey, 1996, A fast flexible docking method using an incremental construction algorithm, J. Mol. Biol, 261, 470, 10.1006/jmbi.1996.0477 Sobolev, 1996, Molecular docking using surface complementarity, Proteins, 25, 120, 10.1002/(SICI)1097-0134(199605)25:1<120::AID-PROT10>3.3.CO;2-1 Vajda, 1994, Effect of conformational flexibility and solvation on receptor–ligand binding free energies, Biochemistry, 33, 13977, 10.1021/bi00251a004 Weng, 1996, Prediction of complexes using empirical free energy functions, Protein Sci, 5, 614, 10.1002/pro.5560050406 Xu, 1995, Sugar specificity of human beta-cell glucokinase –correlation of molecular models with kinetic measurements, Biochemistry, 34, 6083, 10.1021/bi00018a011 Weber, 1996, Molecular mechanics calculations on HIV-1 protease with peptide substrates correlate with experimental data, Protein Eng, 9, 679, 10.1093/protein/9.8.679 Vakser, I.A. GRAMM v1.03: global range molecular matching. Rockefeller University, New York, NY. World Wide Web URL: http://guitar.rockefeller.edu/gramm Katchalski-Katzir, 1992, Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques, Proc. Natl. Acad. Sci. USA, 89, 2195, 10.1073/pnas.89.6.2195 Gigant, 1995, Crystallization and preliminary X-ray diffraction studies of complexes between an influenza hemagglutinin and Fab fragments of two different monoclonal antibodies, Proteins, 23, 249, 10.1002/prot.340230113 MacCallum, 1996, Antibody–antigen interactions: contact analysis and binding site topography, J. Mol. Biol, 262, 732, 10.1006/jmbi.1996.0548 Koehl, 1994, Application of a self-consistent mean field theory to predict protein side-chains conformation and estimate their conformational entropy, J. Mol. Biol, 239, 249, 10.1006/jmbi.1994.1366 Kuntz, 1992, Structure-based strategies for drug design and discovery, Science, 257, 1078, 10.1126/science.257.5073.1078 Frishman, D. & Argos, P. STRIDE: protein secondary structure assignment from atomic coordinates. European Molecular Biology Labora-tory. World Wide Web URL: http://www.embl-heidelberg.de/argos/stride/stride.html Ferrin, 1988, The MIDAS display system, J. Mol. Graphics, 6, 13, 10.1016/0263-7855(88)80054-7 Kolb, C.E. General rayshade information. Stanford University. World Wide Web URL: http://www-graphics.stanford.edu/~cek/rayshade/info.html Yee, 1997, Crystal structure of a 30 kDa C-terminal fragment from the γ chain of human fibrinogen, Structure, 5, 125, 10.1016/S0969-2126(97)00171-8 Dijnovic Carugo, 1997, Crystal structure of a calponin homology domain, Nat. Struct. Biol, 4, 175, 10.1038/nsb0397-175