Meeting review: the Second Meeting on the Critical Assessment of Techniques for Protein Structure Prediction (CASP2), Asilomar, California, December 13–16, 1996
Tóm tắt
Từ khóa
Tài liệu tham khảo
Moult, J. The ProStar Webpage. Center for Advanced Research in Biotechnology, University of Maryland. World Wide Web URL: http://prostar.carb.nist.gov/
Fischer, D. & Eisenberg, D. The UCLA-DOE Benchmark To Assess The Performance Of Fold Recognition Methods. University of California Los Angeles. World Wide Web URL: http://www.mbi.ucla.edu/people/frsvr/frsvr.html
Hubbard, T., et al., & Bryant, S. Second Meeting on the Critical Assessment of Protein Structure Prediction. Center for Advanced Research in Biotechnology, University of Maryland. World Wide Web URL: http://iris4.carb.nist.gov/casp2/
Fidelis, K. Protein Structure Prediction Center. Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, Livermore, CA, USA. World Wide Web URL: http://PredictionCenter.llnl.gov/
Cardozo, 1995, Homology modeling by the internal coordinate mechanics (ICM) method, Proteins, 23, 403, 10.1002/prot.340230314
Šali, 1993, Comparative protein modelling by satisfaction of spatial restraints, J. Mol. Biol, 234, 779, 10.1006/jmbi.1993.1626
Vriend, 1990, WHAT IF: a molecular modeling and drug design program, J. Mol. Graphics, 8, 52, 10.1016/0263-7855(90)80070-V
Bruccoleri, 1987, Prediction of the folding of short polypeptide segments by uniform conformational sampling, Biopolymers, 26, 137, 10.1002/bip.360260114
Moult, 1986, An algorithm for determining the conformation of polypeptide segments in proteins by systematic search, Proteins, 1, 146, 10.1002/prot.340010207
Aszódi, 1995, Global fold determination from a small number of distance restraints, J. Mol. Biol, 251, 308, 10.1006/jmbi.1995.0436
Harrison, 1995, Analysis of six protein structures predicted by comparative modeling techniques, Proteins, 23, 463, 10.1002/prot.340230402
Ponder, 1987, Tertiary templates for proteins: use of packing criteria in the enumeration of allowed sequences for different structural classes, J. Mol. Biol, 193, 775, 10.1016/0022-2836(87)90358-5
Abagyan, 1994, Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins, J. Mol. Biol, 235, 983, 10.1006/jmbi.1994.1052
McGregor, 1987, Analysis of the relationship between side-chain conformation and secondary structure in globular proteins, J. Mol. Biol, 198, 295, 10.1016/0022-2836(87)90314-7
Schrauber, 1993, Rotamers: to be or not to be? An analysis of amino acid side-chain conformations in globular proteins, J. Mol. Biol, 230, 592, 10.1006/jmbi.1993.1172
Levitt, 1992, Accurate modeling of protein conformation by automatic segment matching, J. Mol. Biol, 226, 507, 10.1016/0022-2836(92)90964-L
Chinea, 1995, The use of position-specific rotamers in model building by homology, Proteins, 23, 415, 10.1002/prot.340230315
Dunbrack, 1993, Backbone-dependent rotamer library for proteins: application to sidechain prediction, J. Mol. Biol, 230, 543, 10.1006/jmbi.1993.1170
Dunbrack, 1994, Conformational analysis of the backbone-dependent rotamer preferences of protein sidechains, Nat. Struct. Biol, 1, 334, 10.1038/nsb0594-334
Dunbrack, R.L., Jr. The backbone-dependent rotamer library webpage. University of California, San Francisco. World Wide Web URL: http://www.cmpharm.ucsf.edu/~dunbrack
Bower, 1997, Homology modeling with a backbone-dependent rotamer library, J. Mol. Biol, 10.1006/jmbi.1997.0926
Bower, M., Cohen, F.E. & Dunbrack, R.L., Jr. (1997). SCWRL: a program for building sidechains onto protein backbones. University of California San Francisco. World Wide Web URL: http://www.cmpharm.ucsf.edu/~bower/scwrl.html
Šali, A. MODELLER page at the Rockefeller University. Rockefeller University. World Wide Web URL: http://guitar.rockefeller.edu/modeller/modeller.html
Holm, 1993, Protein structure comparison by alignment of distance matrices, J. Mol. Biol, 233, 123, 10.1006/jmbi.1993.1489
Bycroft, 1997, The solution structure of the S1 RNA binding domain: a member of an ancient nucleic acid-binding fold, Cell, 88, 235, 10.1016/S0092-8674(00)81844-9
Schindelin, 1993, Universal nucleic acid-binding domain revealed by crystal structure of the B. subtilis major cold-shock protein, Nature, 364, 164, 10.1038/364164a0
Rost, 1996, PHD: predicting one-dimensional protein structure by profile based neural networks, Methods Enzymol, 266, 525, 10.1016/S0076-6879(96)66033-9
Rost, B. & Sander, C. PredictProtein. European Molecular Biology Laboratory (EMBL), Heidelberg, Germany. World Wide Web URL: http://www.embl.heidelberg.de/predictprotein/ppDoPred.html
Mehta, P., Heringa, J., Milpetz, F. & Argos, P. SSPRED: a service for secondary structure prediction of proteins. European Molecular Biology Laboratory, Heidelberg Germany. World Wide Web URL: http://www.embl-heidelberg.de/sspred/sspred_info.html
Geourjon, C., Deléage, G. & Blanchet, C. Protein Sequence Analysis at IBCP. Institute of Biology and Chemistry of Proteins, Lyon, France. World Wide Web URL: http://www.ibcp.fr/mailserver.html
Jones, 1995, Successful protein fold recognition by optimal sequence threading validated by rigorous blind testing, Proteins, 23, 387, 10.1002/prot.340230312
Fischer, 1996, Protein fold recognition using sequence-derived predictions, Protein Sci, 5, 947, 10.1002/pro.5560050516
Murzin, 1995, SCOP: a structural classification of proteins database for the investigation of sequences and structures, J. Mol. Biol, 247, 536, 10.1016/S0022-2836(05)80134-2
Defay, 1995, Evaluation of current techniques for ab initio structure prediction, Proteins, 23, 431, 10.1002/prot.340230317
Lesk, 1995, Systematic representation of protein folding patterns, J. Mol. Graphics, 13, 159, 10.1016/0263-7855(95)00037-7
Hubbard, T. CASP2: formats for submission of ab initio predictions. Centre for Protein Engineering, Cambridge, United Kingdom. World Wide Web URL: http://iris4.carb.nist.gov/casp2/ab-submission.html
Jenny, 1994, Evaluating predictions of secondary structure in proteins, Biochem. Biophys. Res. Commun, 200, 149, 10.1006/bbrc.1994.1427
Rost, 1994, Redefining the goals of structure prediction, J. Mol. Biol, 235, 13, 10.1016/S0022-2836(05)80007-5
King, R.D. & Sternberg, M.J. DSC: discrimination of protein secondary structure class. Imperial Cancer Research Fund, London, United Kingdom. World Wide Web URL: http://bonsai.lif.icnet/bmm/dsc/dsc_read_align.html
King, 1996, Identification and application of the concepts important for accurate and reliable protein secondary structure prediction, Protein Sci, 5, 2298, 10.1002/pro.5560051116
Yi, 1993, Protein secondary structure prediction using nearest-neighbor methods, J. Mol. Biol, 232, 1117, 10.1006/jmbi.1993.1464
Salomov, 1995, Prediction of protein secondary structure by combining nearest-neighbor algorithms and multiple sequence alignments, J. Mol. Biol, 247, 11, 10.1006/jmbi.1994.0116
Benner, 1995, The phospho-β-galactosidase and synaptotagmin predictions, Proteins, 23, 446, 10.1002/prot.340230318
Srinivasan, 1995, LINUS: a hierarchic procedure to predict the fold of a protein, Proteins, 22, 81, 10.1002/prot.340220202
Wigley, 1991, Crystal structure of an N-terminal fragment of the DNA gyrase B, Nature, 351, 624, 10.1038/351624a0
Ogihara, 1997, The crystal structure of the designed trimeric coiled coil coil-V(a)L(d): implications for engineering crystals and supramolecular assemblies, Protein Sci, 6, 80, 10.1002/pro.5560060109
Rarey, 1996, Placement of medium-sized molecular fragments into active sites of proteins, J. Cell Mol. Dynam, 10, 41
Rarey, 1996, A fast flexible docking method using an incremental construction algorithm, J. Mol. Biol, 261, 470, 10.1006/jmbi.1996.0477
Sobolev, 1996, Molecular docking using surface complementarity, Proteins, 25, 120, 10.1002/(SICI)1097-0134(199605)25:1<120::AID-PROT10>3.3.CO;2-1
Vajda, 1994, Effect of conformational flexibility and solvation on receptor–ligand binding free energies, Biochemistry, 33, 13977, 10.1021/bi00251a004
Weng, 1996, Prediction of complexes using empirical free energy functions, Protein Sci, 5, 614, 10.1002/pro.5560050406
Xu, 1995, Sugar specificity of human beta-cell glucokinase –correlation of molecular models with kinetic measurements, Biochemistry, 34, 6083, 10.1021/bi00018a011
Weber, 1996, Molecular mechanics calculations on HIV-1 protease with peptide substrates correlate with experimental data, Protein Eng, 9, 679, 10.1093/protein/9.8.679
Vakser, I.A. GRAMM v1.03: global range molecular matching. Rockefeller University, New York, NY. World Wide Web URL: http://guitar.rockefeller.edu/gramm
Katchalski-Katzir, 1992, Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques, Proc. Natl. Acad. Sci. USA, 89, 2195, 10.1073/pnas.89.6.2195
Gigant, 1995, Crystallization and preliminary X-ray diffraction studies of complexes between an influenza hemagglutinin and Fab fragments of two different monoclonal antibodies, Proteins, 23, 249, 10.1002/prot.340230113
MacCallum, 1996, Antibody–antigen interactions: contact analysis and binding site topography, J. Mol. Biol, 262, 732, 10.1006/jmbi.1996.0548
Koehl, 1994, Application of a self-consistent mean field theory to predict protein side-chains conformation and estimate their conformational entropy, J. Mol. Biol, 239, 249, 10.1006/jmbi.1994.1366
Kuntz, 1992, Structure-based strategies for drug design and discovery, Science, 257, 1078, 10.1126/science.257.5073.1078
Frishman, D. & Argos, P. STRIDE: protein secondary structure assignment from atomic coordinates. European Molecular Biology Labora-tory. World Wide Web URL: http://www.embl-heidelberg.de/argos/stride/stride.html
Kolb, C.E. General rayshade information. Stanford University. World Wide Web URL: http://www-graphics.stanford.edu/~cek/rayshade/info.html
Yee, 1997, Crystal structure of a 30 kDa C-terminal fragment from the γ chain of human fibrinogen, Structure, 5, 125, 10.1016/S0969-2126(97)00171-8