Medium chromatic dispersion calculation and correction in spectral-domain optical coherence tomography

Frontiers of Optoelectronics - Tập 10 - Trang 323-328 - 2017
Vasily A. Matkivsky1, Alexander A. Moiseev1, Sergey Yu. Ksenofontov1, Irina V. Kasatkina1, Grigory V. Gelikonov1, Dmitry V. Shabanov1, Pavel A. Shilyagin1, Valentine M. Gelikonov1
1Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia

Tóm tắt

A method for determining and correcting distortions in spectral-domain optical coherence tomography images caused by medium dispersion was developed. The method is based on analysis of the phase distribution of the interference signal recorded by an optical coherence tomography device using an iterative approach to find and compensate for the effect of a medium’s chromatic dispersion on point-spread function broadening in optical coherence tomography. This enables compensation of the impact of medium dispersion to an accuracy of a fraction of a radian (units of percent) while avoiding additional measurements and solution of the optimization problem. The robustness of the method was demonstrated experimentally using model and biological objects.

Tài liệu tham khảo

Drexler W, Fujimoto J G. Optical Coherence Tomography Technology and Applications. Berlin: Springer, 2008, 1357 Puliafito C A, Hee M R, Schuman J S, Fujimoto J G. Optical Coherence Tomography of Ocular Diseases. Thorofare, NJ: Slack Inc., 1996, 376 Gupta V, Gupta A, Dogra M R. Atlas of Optical Coherence Tomography of Macular Diseases. Boca Raton: Taylor & Francis, 2004 Zaitsev V Y, Vitkin I A, Matveev L A, Gelikonov VM, Matveyev A L, Gelikonov G V. Recent trends in multimodal optical coherence tomography II. The correlation-stability approach in OCT elastography and methods for visualization of microcirculation. Radiophysics and Quantum Electronics, 2014, 57(3): 210–225 Loduca A L, Zhang C, Zelkha R, Shahidi M. Thickness mapping of retinal layers by spectral-domain optical coherence tomography. American Journal of Ophthalmology, 2010, 150(6): 849–855 Chiu S J, Li X T, Nicholas P, Toth C A, Izatt J A, Farsiu S. Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation. Optics Express, 2010, 18(18): 19413–19428 Fercher A F, Hitzenberger C K, Sticker M, Zawadzki R, Karamata B, Lasser T. Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique. Optics Communications, 2002, 204(1–6): 67–74 Lippok N, Coen S, Nielsen P, Vanholsbeeck F. Dispersion compensation in Fourier domain optical coherence tomography using the fractional Fourier transform. Optics Express, 2012, 20(21): 23398–23413 Choi W, Baumann B, Swanson E A, Fujimoto J G. Extracting and compensating dispersion mismatch in ultrahigh-resolution Fourier domain OCT imaging of the retina. Optics Express, 2012, 20(23): 25357–25368 Wu X, Gao W. Dispersion analysis in micron resolution spectral domain optical coherence tomography. Journal of the Optical Society of America. B, Optical Physics, 2017, 34(1): 169–177 Lychagov V V, Ryabukho V P. Chromatic dispersion effects in ultra-low coherence interferometry. Quantum Electronics, 2015, 45(6): 556–560 Yu X, Liu X, Chen S, Luo Y, Wang X, Liu L. High-resolution extended source optical coherence tomography. Optics Express, 2015, 23(20): 26399–26413 Xu D, Huang Y, Kang J U. Graphics processing unit-accelerated real-time compressive sensing spectral domain optical coherence tomography. In: Proceedings of SPIE. 2015, 93301B Bian H, Gao W. Wavelet transform-based method of compensating dispersion for high resolution imaging in SDOCT. In: Proceedings of SPIE. 2014, 92360X Pan L, Wang X, Li Z, Zhang X, Bu Y, Nan N, Chen Y, Wang X, Dai F. Depth-dependent dispersion compensation for full-depth OCT image. Optics Express, 2017, 25(9): 10345–10354 Wang B, Jiang Z, Hu Y, Wang Z. A segmental dispersion compensation method to improve axial resolution of specified layer in FD-OCT. In: Proceedings of SPIE, Optical Measurement Technology and Instrumentation. 2016, 101553L Okano M, Okamoto R, Tanaka A, Ishida S, Nishizawa N, Takeuchi S. Dispersion cancellation in high-resolution two-photon interference. Physical Review A, 2013, 88(4): 043845 Shirai T. Modifications of intensity-interferometric spectral-domain optical coherence tomography with dispersion cancellation. Journal of Optics, 2015, 17(4): 045605 Photiou C, Bousi E, Zouvani I, Pitris C. Using speckle to measure tissue dispersion in optical coherence tomography. Biomedical Optics Express, 2017, 8(5): 2528–2535 Photiou C., Pitris C. Tissue dispersion measurement techniques using optical coherence tomography. In: Proceedings of SPIE, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXI. 2017, 100532W Banaszek K, Radunsky A S, Walmsley I A. Blind dispersion compensation for optical coherence tomography. In: Proceedings of Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, San Francisco, California. 2004, CWJ6 Banaszek K, Radunsky A S, Walmsley I A. Blind dispersion compensation for optical coherence tomography. Optics Communications, 2007, 269(1): 152–155 Matkivsky V A, Moiseev A A, Gelikonov G V, Shabanov D V, Shilyagin P A, Gelikonov V M. Correction of aberrations in digital holography using the phase gradient autofocus technique. Laser Physics Letters, 2016, 13(3): 035601 Leitgeb R A, Wojtkowski M. Complex and coherence noise free Fourier domain optical coherence tomography. In: Drexler W, Fujimoto J G, eds. Optical Coherence Tomography: Technology and Applications. Berlin: Springer, 2008, 177–207 Gelikonov V M, Gelikonov G V, Kasatkina I V, Terpelov D A, Shilyagin P A. Coherent noise compensation in spectral-domain optical coherence tomography. Optics and Spectroscopy, 2009, 106(6): 895–900 Fercher A F. Optical coherence tomography. Journal of Biomedical Optics, 1996, 1(2): 157–173 Welge W A, Barton J K. Expanding functionality of commercial optical coherence tomography systems by integrating a custom endoscope. PLoS One, 2015, 10(9): e0139396 Schott Optical glass datasheet (Electronic document) https://refractiveindex.info/download/data/2015/schott-optical-glass-collection-datasheets-july-2015-us.pdf Batovrin V K, Garmash I A, Gelikonov V M, Gelikonov G V, Lyubarskiǐ A V, Plyavenek A G, Safin S A, Semenov A T, Shidlovskiǐ V R, Shramenko M V, Yakubovich S D. Superluminescent diodes based on single-quantum-well (GaAl)As heterostructures. Quantum Electronics, 1996, 26(2): 109–114 Matveev L A, Zaitsev V Y, Gelikonov G V, Matveyev A L, Moiseev A A, Ksenofontov S Y, Gelikonov V M, Sirotkina M A, Gladkova N D, Demidov V, Vitkin A. Hybrid M-mode-like OCT imaging of three-dimensional microvasculature in vivo using reference-free processing of complex valued B-scans. Optics Letters, 2015, 40(7): 1472–1475