Medium Effect in S-shell Double- $$\Lambda $$ Hypernuclei and Hyperon Superfluidity in Neutron Star Cores

Few-Body Systems - Tập 62 - Trang 1-6 - 2021
Zin Mar Htay1, Aye Aye Min2, Khin Swe Myint3, Y. Akaishi4
1Department of Physics, University of Kyaukse, Kyaukse, Republic of the Union of Myanmar
2Department of Physics, Yadanabon University, Mandalay, Republic of the Union of Myanmar
3Department of Physics, Mandalay University, Mandalay, Republic of the Union of Myanmar
4High Energy Accelerator Research Organization (KEK), Tsukuba, Japan

Tóm tắt

The effective $$\Lambda $$ - $$\Lambda $$ interaction energies in s-shell double- $$\Lambda $$ hypernuclei, $$^{6}_{\Lambda \Lambda }\text {He}$$ , $$^{5}_{\Lambda \Lambda }\text {He}$$ and $$^{5}_{\Lambda \Lambda }\text {H}$$ have been investigated by solving three-body system ( $$\Lambda $$ + $$\Lambda $$ + core) within the framework of coupled rearrangement channel Gaussian basis treatment. The Nijmegen soft-core potential models, NSC97d, NSC97e and NSC97f, have been applied for free-space $$\Lambda $$ - $$\Lambda $$ interaction. By taking into account the medium effects, it was adjusted to fit the experimental $$\Lambda $$ - $$\Lambda $$ interaction energies of $$^{6}_{\Lambda \Lambda }\text {He}$$ (0.67 ± 0.17 MeV). The effective $$\Lambda $$ - $$\Lambda $$ interaction energies of $$^{5}_{\Lambda \Lambda }\text {He}$$ are 0.92 MeV, 0.88 MeV, 0.86 MeV for each potential model and that of $$^{5}_{\Lambda \Lambda }\text {H}$$ is 0.6 MeV for all potential modes. Moreover, the $$\Lambda $$ -superfludity in the neutron star cores which is related to cooling process has also been investigated by applying our constructed effective $$\Lambda $$ - $$\Lambda $$ NSC97e potential of $$^{6}_{\Lambda \Lambda }\text {He}$$ . It is found that $$\Lambda $$ superfludity begins to appear when the interaction strength is 1.5 times more attractive than our constructed interaction. The $$\Lambda $$ -superfluidity in the neutron star cores might occur at the hyperon percentage $$Y_\Lambda $$ (1%–5%), and vanish at $$Y_\Lambda $$ (15%– 20%).

Tài liệu tham khảo

I. Vidaña, J. Phys. Conf. Ser. 668(1), 012031 (2016). https://doi.org/10.1088/1742-6596/668/1/012031 C. Schaab, S. Balberg, J. Schaffner-Bielich, Astrophys. J. Lett. 504, L99 (1998). https://doi.org/10.1086/311577 S. Nishizaki, T. Takatsuka, Y. Yamamoto, Prog. Theor. Phys. 108, 703 (2002). https://doi.org/10.1143/PTP.108.703 S. Balberg, I. Lichtenstadt, G.B. Cook, Astrophys. J. Suppl. 121, 515 (1999). https://doi.org/10.1086/313196 J.L. Zdunik, P. Haensel, Astron. Astrophys. 551, A61 (2013). https://doi.org/10.1051/0004-6361/201220697 T. Takatsuka, R. Tamagaki, Nucl. Phys. A 670, 222 (2000). https://doi.org/10.1016/S0375-9474(00)00104-4 T. Takatsuka, S. Nishizaki, Y. Akaishi, J.P.S. Conf, JPS Conf. Proc. 20, 011034 (2018). https://doi.org/10.7566/JPSCP.20.011034 K.S. Myint, S. Shinmura, Y. Akaishi, Eur. Phys. J. A 16, 21 (2003). https://doi.org/10.1140/epja/i2002-10083-y Z.M. Htay, A.A. Min, K.S. Myint, Y. Akaishi, A.I.P. Conf, AIP Conf. Proc. 2319(1), 080022 (2021). https://doi.org/10.1063/5.0037108 K. Nakazawa, Nucl. Phys. A 835, 207 (2010). https://doi.org/10.1016/j.nuclphysa.2010.01.195