Medium Effect in S-shell Double- $$\Lambda $$ Hypernuclei and Hyperon Superfluidity in Neutron Star Cores
Tóm tắt
The effective
$$\Lambda $$
-
$$\Lambda $$
interaction energies in s-shell double-
$$\Lambda $$
hypernuclei,
$$^{6}_{\Lambda \Lambda }\text {He}$$
,
$$^{5}_{\Lambda \Lambda }\text {He}$$
and
$$^{5}_{\Lambda \Lambda }\text {H}$$
have been investigated by solving three-body system (
$$\Lambda $$
+
$$\Lambda $$
+ core) within the framework of coupled rearrangement channel Gaussian basis treatment. The Nijmegen soft-core potential models, NSC97d, NSC97e and NSC97f, have been applied for free-space
$$\Lambda $$
-
$$\Lambda $$
interaction. By taking into account the medium effects, it was adjusted to fit the experimental
$$\Lambda $$
-
$$\Lambda $$
interaction energies of
$$^{6}_{\Lambda \Lambda }\text {He}$$
(0.67 ± 0.17 MeV). The effective
$$\Lambda $$
-
$$\Lambda $$
interaction energies of
$$^{5}_{\Lambda \Lambda }\text {He}$$
are 0.92 MeV, 0.88 MeV, 0.86 MeV for each potential model and that of
$$^{5}_{\Lambda \Lambda }\text {H}$$
is 0.6 MeV for all potential modes. Moreover, the
$$\Lambda $$
-superfludity in the neutron star cores which is related to cooling process has also been investigated by applying our constructed effective
$$\Lambda $$
-
$$\Lambda $$
NSC97e potential of
$$^{6}_{\Lambda \Lambda }\text {He}$$
. It is found that
$$\Lambda $$
superfludity begins to appear when the interaction strength is 1.5 times more attractive than our constructed interaction. The
$$\Lambda $$
-superfluidity in the neutron star cores might occur at the hyperon percentage
$$Y_\Lambda $$
(1%–5%), and vanish at
$$Y_\Lambda $$
(15%– 20%).
Tài liệu tham khảo
I. Vidaña, J. Phys. Conf. Ser. 668(1), 012031 (2016). https://doi.org/10.1088/1742-6596/668/1/012031
C. Schaab, S. Balberg, J. Schaffner-Bielich, Astrophys. J. Lett. 504, L99 (1998). https://doi.org/10.1086/311577
S. Nishizaki, T. Takatsuka, Y. Yamamoto, Prog. Theor. Phys. 108, 703 (2002). https://doi.org/10.1143/PTP.108.703
S. Balberg, I. Lichtenstadt, G.B. Cook, Astrophys. J. Suppl. 121, 515 (1999). https://doi.org/10.1086/313196
J.L. Zdunik, P. Haensel, Astron. Astrophys. 551, A61 (2013). https://doi.org/10.1051/0004-6361/201220697
T. Takatsuka, R. Tamagaki, Nucl. Phys. A 670, 222 (2000). https://doi.org/10.1016/S0375-9474(00)00104-4
T. Takatsuka, S. Nishizaki, Y. Akaishi, J.P.S. Conf, JPS Conf. Proc. 20, 011034 (2018). https://doi.org/10.7566/JPSCP.20.011034
K.S. Myint, S. Shinmura, Y. Akaishi, Eur. Phys. J. A 16, 21 (2003). https://doi.org/10.1140/epja/i2002-10083-y
Z.M. Htay, A.A. Min, K.S. Myint, Y. Akaishi, A.I.P. Conf, AIP Conf. Proc. 2319(1), 080022 (2021). https://doi.org/10.1063/5.0037108
K. Nakazawa, Nucl. Phys. A 835, 207 (2010). https://doi.org/10.1016/j.nuclphysa.2010.01.195