Medical image fusion based on DTNP systems and Laplacian pyramid

Siheng Mi1, Li Zhang2, Hong Peng2, Jun Wang3
1School of Computer and Software Engineering, Xihua University, Chengdu, China#TAB#
2School of Computer and Software Engineering, Xihua University, Chengdu, China
3School of Electrical Engineering and Electronic Information, Xihua University, Chengdu, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ionescu, M., Pǎun, G., & Yokomori, T. (2006). Spiking neural P systems. Fundamenta Informaticae, 71, 279–308.

Pǎun, G., Rozenberg, G., & Salomaa, A. (2010). The Oxford Handbook of Membrane Computing. New York: Oxford University Press.

Pǎun, Gh. (2007). Spiking neural P systems with astrocyte-like control. Journal of Universal Computer Science, 13(11), 1707–1721.

Pan, L., & Pǎun, G. (2009). Spiking neural P systems with anti-spikes. International Journal of Computers Communications & Control, 4(3), 273–282.

Peng, H., Yang, J., Wang, J., Wang, T., Sun, Z., Song, X., Lou, X., & Huang, X. (2017). Spiking neural P systems with multiple channels. Neural Networks, 95, 66–71.

Wu, T., Pǎun, A., Zhang, Z., & Pan, L. (2017). piking neural P systems with polarizations. IEEE Transactions on Neural Networks and Learning Systems, 29(8), 3349–3360.

Cabarle, F. G. C., Adorna, H. N., Pérez-Jiménez, M. J., & Song, T. (2015). Spiking neural P systems with structural plasticity. Neural Computing and Applications, 26(8), 1905–1917.

Song, X., Valencia-Cabrera, L., Peng, H., Wang, J., & Pérez-Jiménez, M. J. (2021). Spiking neural P systems with delay on synapses. International Journal of Neural Systems, 31(1), 1–19.

Peng, H., & Wang, J. (2018). Coupled neural P systems. IEEE Transactions on Neural Networks and Learning Systems, 30(6), 1672–1682.

Peng, H., Li, B., Wang, J., Song, X., Wang, T., Valencia-Cabrera, L., Pérez-Hurtado, I., Riscos-Núñez, A., & Pérez-Jiménez, M. J. (2020). Spiking neural P systems with inhibitory rules. Knowledge-Based Systems, 188, 1–10.

Peng, H., Bao, T., Luo, X., Wang, J., Song, X., Riscos-Núñez, A., & Pérez-Jiménez, M.J. (2020). Dendrite P systems. Neural Networks, 127, 110–120.

Peng, H., Lv, Z., Li, B., Luo, X., Wang, J., Song, X., Wang, T., Pérez-Jiménez, M.J., & Riscos-Núñez, A. (2020). Nonlinear spiking neural P systems. International Journal of Neural Systems, 30(10): 1–17.

Díaz-Pernil, D., Gutiérrez-Naranjo, M. A., & Peng, H. (2019). Membrane computing and image processing: a short survey. Journal of Membrane Computing, 1(1), 58–73.

Singh, R., & Khare, A. (2014). Fusion of multimodal medical images using Daubechies complex wavelet transform—a multiresolution approach. Information Fusion, 19, 49–60.

Manchanda, M., & Sharma, R. (2016). A novel method of multimodal medical image fusion using fuzzy transform. Journal of Visual Communication and Image Representation, 40, 197–217.

Manchanda, M., & Sharma, R. (2018). An improved multimodal medical image fusion algorithm based on fuzzy transform. Journal of Visual Communication and Image Representation, 51, 76–94.

Singh, S., & Anand, R. S. (2018). Ripplet domain fusion approach for CT and MR medical image information. Biomedical Signal Processing and Control, 46, 281–292.

Padmavathi, K., Asha, C. S., & Karki, M. V. (2020). A novel medical image fusion by combining TV-L1 decomposed textures based on adaptive weighting scheme. Engineering Science and Technology, 23(1), 225–239.

Yang, L., Guo, B., & Ni, W. (2008). Multimodality medical image fusion based on multiscale geometric analysis of contourlet transform. Neurocomputing, 72(1–3), 203–211.

Zhu, Z., Yin, H., Chai, Y., Li, Y., & Qi, G. (2018). A novel multi-modality image method based on image decomposition and sparse representation. Information Science, 432, 516–529.

Zhang, Q., Shi, T., Wang, F., Blum, R. S., & Han, J. (2018). Robust sparse repesentation based multi-focus image fusion with dictionary construction and local spitial consistency. Pattern Recognition, 83, 299–313.

Ma, X., Hu, S., Liu, S., Fang, J., & Xu, S. (2019). Multi-focus image fusion based on joint sparse representation and optimum theory. Signal Processing, 78, 125–134.

Zhang, M., Li, S., Yu, F., & Tian, X. (2020). Image fusion employing adaptive spectral-spatial gradient sparse regularization in UAV remote sensing. Signal Processing, 170(107434), 1–13.

Zhang, Y., Yang, M., Li, N., & Yu, Z. (2020). Analysis-synthesis dictionary pair learning and patch saliency measure for image fusion. Signal Processing, 167(107327), 1–13.

Hu, Q., Hu, S., & Zhang, F. (2020). Multi-modality medical image fusion based on separable dictionary learning and Gabor filtering. Signal Processing, 83(115758), 1–10.

Li, H., Wang, Y., Yang, Z., et al. (2020). Discriminative dictionary learning-based multiple component decomposition for detail-preserving noisy image fusion. IEEE Transactions on Instrumentation and Measurement, 69(4), 1082–1102.

Li, H., & Wu, X. (2019). Densefuse: a fusion approach to infrared and visible images. IEEE Transactions on Image Processing, 28(5), 2614–2623.

Zhang, Y., & Liu, Y. (2020). IFCNN: a general image fusion framework based on convolutional neural network. Information Fusion, 54, 99–118.

Peng, H., Wang, J., Pérez-Jiménez, M. J., & Riscos-Núñez, A. (2019). Dynamic threshold neural P systems. Knowledge-Based Systems, 163, 875–884.

Liu, Y., Liu, S., & Wang, Z. (2015). A general framework for image fusion based on multi-scale transform and sparse representation. Information Fusion, 24(1), 147–164.

Li, S., Kang, X., & Hu, J. (2013). Image fusion with guided filtering. IEEE Transactions on Image Processing, 22(7), 2864–2875.

Zhu, Z., Zheng, M., Qi, G., Wang, D., & Xiang, Y. (2019). A phase congruency and local laplacian energy based multi-modality medical image fusion method in NSCT domain. IEEE Access, 2019(7), 20811–20824.

Li, B., Peng, H., & Wang, J. (2021). A novel fusion method based on dynamic threshold neural P systems and nonsubsampled contourlet transform for multi-modality medical images. Signal Processing, 178, 107793.

Yin, M., Liu, X., Liu, Y., & Chen, X. (2019). Medical image fusion with parameter-adaptive pulse coupled neural network in nonsubsampled shearlet transform domain. IEEE Transactions on Instrumentation and Measurement, 68(1), 49–64.

Tan, W., Tiwari, P., Pandey, H., Moreira, C., & Jaiswal, A. (2020). Multimodal medical image fusion algorithm in the era of big data. Neural Computing and Applications. https://doi.org/10.1007/s00521-020-05173-2.

Liu, Y., Chen, X., Cheng, J., & Peng, H. (2017). A medical image fusion method based on convolutional neural networks. 20th International Conference on Information Fusion, Xi’an, China, pp. 1070–1060.

Xydeas, C. S., & Petrovic, V. (2000). Objective image fusion performance measure. Electronics Letters, 36(4), 308–309.

Hossny, M., Nahavandi, S., & Creighton, D. (2008). Comments on information measure for performance of image fusion. Electronics Letters, 44(18), 1066–1067.

Haghighat, M. B. A., Aghagolzadeh, A., & Seyedarabi, H. (2011). A non-reference image fusion metric based on mutual information of image features. Computer Electronic Engineering, 37(5), 744–756.

Aslantas, V., & Bendes, E. (2015). A new image quality metric for image fusion: the sum of the correlations of differences. International Journal of Electronics and Communications, 69(12), 1890–1896.

Wang, Z., Simoncelli, E. P., & Bovik, A. C. (2003). Multiscale structural similarity for image quality assessment. The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003(2), 1398–1402.

Aslantas, V., & Kurban, R. (2010). Fusion of multi-focus images using differential evolution algorithm. Expert Systems with Applications, 37(12), 8861–8870.

Cui, G., Feng, H., Xu, Z., Li, Q., & Chen, Y. (2015). Detail preserved fusion of visible and infrared images using regional saliency extraction and multi-scale image decomposition. Optical Communications, 341, 199–209.

Eskicioglu, A. M., & Fisher, P. S. (1995). Image quality measures and their performance. IEEE Transactions on Communications, 43(12), 2959–2965.

Kumar, M., & Dass, S. (2009). A total variation-based algorithm for pixel-level image fusion. IEEE Transactions on Image Processing, 18(9), 2137–2143.