Medaka — a model organism from the far east
Tóm tắt
Từ khóa
Tài liệu tham khảo
Karakawa, J. & Shibata, T. Local Names (Dialects) of the Medaka — 5000 Variations and their Distribution (in Japanese) (Miousha, Tokyo, 1980).
Yamamoto, T. Medaka (Killifish): Biology and Strains (Keigaku Publishing Co., Tokyo, 1975).
Temminck, J. C. & Schlegel, H. in Fauna Japonica (ed. de Siebold, P. F.) 224–225 (A. Arnz et socios, Leiden, the Netherlands, 1850).
Jordan, D. S. & Snyder, J. O. A review of the poeciliidae or killifishes of Japan. Proc. US Natl Mus. 31, 287–290 (1906).
Aida, T. On the inheritance of color in a freshwater fish, Aplocheilus latipes Temminck and Schlegel, with special reference to sex-linked inheritance. Genetics 6, 554–573 (1921).
Ishikawa, C. Lectures on Zoology (in Japanese) (Kanazashi-Horyu–Do, Tokyo, 1913).
Toyama, K. On some Mendelian characters (in Japanese). Rep. Jap. Breed. Soc. 1, 1–9 (1916).
Hyodo-Taguchi, Y. & Egami, N. Establishment of inbred strains of the medaka Oryzias latipes and the usefulness of the strains for biomedical research. Zool. Sci. 2, 305–316 (1985).
Ozato, K. et al. Production of transgenic fish: introduction and expression of chicken δ-crystallin gene in medaka embryos. Cell Differ. 19, 237–244 (1986).This paper describes the first successful generation of stable transgenic fish by DNA injection into the germinal vesicle, followed by in vitro oocyte maturation.
Shima, A. & Shimada, A. Development of a possible nonmammalian test system for radiation-induced germ-cell mutagenesis using a fish, the Japanese medaka (Oryzias latipes). Proc. Natl Acad. Sci. USA 88, 2545–2549 (1991).
Loosli, F. et al. A genetic screen for mutations affecting embryonic development in medaka fish (Oryzias latipes). Mech. Dev. 97, 133–139 (2000).This paper reports a pilot mutagenesis screen and the resulting unique mutant phenotypes; together with reference 14 , it describes the first systematic mutagenesis approach to isolate embryonic-lethal developmental mutants in medaka.
Anken, R. & Bourrat, F. Brain Atlas of the Medakafish Oryzias latipes (Institut National de la Recherche Agronomique, Paris, 1998).References 12 and 14 together provide the basis for all neuro-developmental studies in medaka.
Ishikawa, Y. Embryonic development of the medaka brain. Fish Biol. J. Medaka 9, 17–31 (1997).
Ishikawa, Y. Medakafish as a model system for vertebrate developmental genetics. Bioessays 22, 487–495 (2000).
Fukamachi, S., Shimada, A. & Shima, A. Mutations in the gene encoding B, a novel transporter protein, reduce melanin content in medaka. Nature Genet. 28, 381–385 (2001).
Loosli, F. et al. Medaka eyeless is the key factor linking retinal dertermination and eye growth. Development 128, 4035–4044 (2001).
Kondo, S. et al. The medaka rs-3 locus required for scale development encodes ectodysplasin-A receptor. Curr. Biol. 7, 1202–1206 (2001).
'Zebrafish Issue'. Development 123, 1–481 (1996).A compendium of zebrafish mutants isolated using mutagenesis screens in the laboratories of C. Nüsslein-Volhard and W. Driever.
Dooley, K. & Zon, L. I. Zebrafish: a model system for the study of human disease. Curr. Opin. Genet. Dev. 10, 252–256 (2000).
Childs, S. et al. Zebrafish dracula encodes ferrochelatase and its mutation provides a model for erythropoietic protoporphyria. Curr. Biol. 10, 1001–1004 (2000).
Dodd, A., Curtis, P. M., Williams, L. C. & Love, D. R. Zebrafish: bridging the gap between development and disease. Hum. Mol. Genet. 9, 2443–2449 (2000).
Amores, A. et al. Zebrafish hox clusters and vertebrate genome evolution. Science 282, 1711–1714 (1998).Together with references 24 , and 95 , this paper provides evidence that teleost fish underwent an additional round of whole-genome duplication, which can explain why so many gene families in fish have more members than the corresponding ones in amphibians, reptiles, birds and mammals.
Postlethwait, J. H. et al. Zebrafish comparative genomics and the origins of vertebrate chromosomes. Genome Res. 10, 1890–1902 (2000).
Tomita, H. in Medaka (Killifish): Biology and Strains (ed. Yamamoto, T.) 251–272 (Keigaku Publishing Co., Tokyo, Japan, 1975).
Tomita, H. in Biology of the Medaka (eds Egami, N., Yamagami, K. & Shima, A.) 111–128 (in Japanese) (Univ. of Tokyo Press, Tokyo, 1990).
Tomita, H. The lists of mutants and strains of medaka, commom gambusia, silver crucian carp, goldfish, and golden venus fish maintained in the laboratory of freshwater fish stocks, Nagoya University. Fish Biol. J. Medaka 4, 45–47 (1992).
Law, J. Mechanistic considerations in small fish carcinogenicity testing. ILAR J. 42, 274–284 (2001).
Arcand Hoy, L. D. & Benson, W. H. Fish reproduction: an ecologically relevant indicator of endocrine disruption. Environ. Toxicol. Chem. 17, 49–57 (1998).
Metcalfe, C. D. et al. Estrogenic potency of chemicals detected in sewage treatment plant effluents as determined by in vivo assays with Japanese medaka (Oryzias latipes). Environ. Toxicol. Chem. 20, 297–308 (2001).
Scholz, S. & Gutzeit, H. O. 17-α-ethinylestradiol affects reproduction, sexual differentiation and aromatase gene expression of the medaka (Oryzias latipes). Aquat. Toxicol. 50, 363–373 (2000).
Shima, A. & Shimada, A. The Japanese medaka, Oryzias latipes, as a new model organism for studying environmental germ-cell mutagenesis. Environ. Health Perspect. (Suppl.) 102, 33–35 (1994).
Solnica-Krezel, L., Schier, A. F. & Driever, W. Efficient recovery of ENU-induced mutations from the zebrafish germline. Genetics 136, 1401–1420 (1994).
Shimada, A. & Shima, A. Combination of genomic DNA fingerprinting into the medaka specific-locus test system for studying environmental germ-line mutagenesis. Mutation Res. 399, 149–165 (1998).
Egami, N. Studies on the variation of the number of the anal fin-rays in Oryzias latipes. I. Geographical variation in wild populations (in Japanese with English resumé). Jpn. J. Ichthyol. 3, 87–89 (1953).
Sakaizumi, M., Moriwaki, K. & Egami, N. Allozymic variation and regional differentiation in wild populations of the fish Oryzias latipes. Copeia 2, 311–318 (1983).
Ohtsuka, M. et al. Construction of a linkage map of the medaka (Oryzias latipes) and mapping of the Da mutant locus defective in dorsoventral patterning. Genome Res. 9, 1277–1287 (1999).
Naruse, K. et al. A detailed linkage map of medaka, Oryzias latipes: comparative genomics and genome evolution. Genetics 154, 1773–1784 (2000).
Kubota, Y., Shimada, A. & Shima, A. Detection of γ-ray-induced DNA damages in malformed dominant lethal embryos of the Japanese medaka (Oryzias latipes) using AP-PCR fingerprinting. Mutat. Res. 283, 263–270 (1992).
Wada, H., Naruse, K., Shimada, A. & Shima, A. Genetic linkage map of a fish, the Japanese medaka Oryzias latipes. Mol. Mar. Biol. Biotechnol. 4, 269–274 (1995).
Kubota, Y., Shimada, A. & Shima, A. DNA alterations detected in the progeny of paternally irradiated Japanese medaka fish (Oryzias latipes). Proc. Natl Acad. Sci. USA 92, 330–334 (1995).
Winkler, S., Loosli, F., Henrich, T., Wakamatsu, Y. & Wittbrodt, J. The conditional medaka mutation eyeless uncouples patterning and morphogenesis of the eye. Development 127, 1911–1919 (2000).
Hackett, P. B. & Alvarez, C. in Recent Advances in Marine Biotechnology — Aquaculture of Fishes (eds Fingerman, M. & Nagabhushanam, R.) 77–145 (Science Publisher Inc., Enfield, UK, 2000).
Köster, R., Stick, R., Loosli, F. & Wittbrodt, J. Medaka spalt acts as a target gene of hedgehog signaling. Development 124, 3147–3156 (1997).
Loosli, F., Winkler, S. & Wittbrodt, J. Six3 overexpression initiates the formation of ectopic retina. Genes Dev. 13, 649–654 (1999).
Carl, M. & Wittbrodt, J. Graded interference with FGF-signalling reveals its dorso-ventral asymmetry at the mid–hindbrain boundary. Development 126, 5659–5667 (1999).
Yamauchi, K. & Yamamoto, K. In vitro maturation of the oocytes in the medaka, Oryzias latipes. Annotat. Zool. Japon. 46, 144–153 (1973).
Tanaka, M., Kinoshita, M., Kobayashi, D. & Nagahama, Y. Establishment of medaka (Oryzias latipes) transgenic lines with the expression of green fluorescent protein fluorescence exclusively in germ cells: a useful model to monitor germ cells in a live vertebrate. Proc. Natl Acad. Sci. USA 98, 2544–2549 (2001).
Wakamatsu, Y., Pristyazhnyuk, S., Kinoshita, M., Tanaka, M. & Ozato, K. The see-through medaka: a fish model that is transparent throughout life. Proc. Natl Acad. Sci. USA 98, 10046–10050 (2001).
Gaiano, N. et al. Insertional mutagenesis and rapid cloning of essential genes in zebrafish. Nature 383, 829–832 (1996).
Rubin, G. M. & Spradling, A. C. Genetic transformation of Drosophila with transposable element vectors. Science 218, 348–353 (1982).
O'Kane, C. J. & Gehring, W. J. Detection in situ of genomic regulatory elements in Drosophila. Proc. Natl Acad. Sci. USA 84, 9123–9127 (1987).
Cooley, L., Berg, C. & Spradling, A. Controlling P element insertional mutagenesis. Trends Genet. 4, 254–258 (1988).
Gibbs, P. D., Gray, A. & Thorgaard, G. Inheritance of P element and reporter gene sequences in zebrafish. Mol. Mar. Biol. Biotechnol. 3, 317–326 (1994).
Handler, A. M., Gomez, S. P. & O'Brochta, D. A. A functional analysis of the P-element gene-transfer vector in insects. Arch. Insect Biochem. Physiol. 22, 373–384 (1993).
Rio, D. C., Barnes, G., Laski, F. A., Rine, J. & Rubin, G. M. Evidence for Drosophila P element transposase activity in mammalian cells and yeast. J. Mol. Biol. 200, 411–415 (1988).
Vos, J. C., De Baere, I. & Plasterk, R. H. Transposase is the only nematode protein required for in vitro transposition of Tc1. Genes Dev. 10, 755–761 (1996).
Ivics, Z., Hackett, P. B., Plasterk, R. H. & Izsvak, Z. Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91, 501–510 (1997).
Henrich, T. Enhancer Trapping in Medaka using the Reconstructed Transposon “Sleeping Beauty” 106 (Ruprecht-Karls-Universität, Heidelberg, 1999).
Koga, A., Inagaki, H., Bessho, Y. & Hori, H. Insertion of a novel transposable element in the tyrosinase gene is responsible for an albino mutation in the medaka fish, Oryzias latipes. Mol. Gen. Genet. 249, 400–405 (1995).
Koga, A., Suzuki, M., Inagaki, H., Bessho, Y. & Hori, H. Transposable element in fish. Nature 383, 30 (1996).Identification of an actively relocating transposon in medaka and its successful transient application in zebrafish (also see reference 63).
Kawakami, K., Koga, A., Hori, H. & Shima, A. Excision of the Tol2 transposable element of the medaka fish, Oryzias latipes, in zebrafish, Danio rerio. Gene 225, 17–22 (1998).
Dickmeis, T. et al. A crucial component of the endoderm formation pathway, CASANOVA, is encoded by a novel sox-related gene. Genes Dev. 15, 1487–1492 (2001).
Sun, L. et al. ES-like cell cultures derived from early zebrafish embryos. Mol. Mar. Biol. Biotechnol. 4, 193–199 (1995).
Wakamatsu, Y., Ozato, K. & Sasado, T. Establishment of a pluripotent cell line derived from a medaka (Oryzias latipes) blastula embryo. Mol. Mar. Biol. Biotechnol. 3, 185–191 (1994).
Hong, Y., Winkler, C. & Schartl, M. Pluripotency and differentiation of embryonic stem cell lines from the medakafish (Oryzias latipes). Mech. Dev. 60, 33–44 (1996).
Ma, C. G., Fan, L. C., Ganassin, R., Bols, N. & Collodi, P. Production of zebrafish germ-line chimeras from embryo cell cultures. Proc. Natl Acad. Sci. USA 98, 2461–2466 (2001).This paper reports cell transplantation studies from short-term cultured blastula cells, showing that these cells contribute to the germ line of the recipient, and can give rise to offspring that are derived from the donor transplant cell.
Hong, Y., Winkler, C. & Schartl, M. Production of medakafish chimeras from a stable embryonic stem cell line. Proc. Natl Acad. Sci. USA 95, 3679–3684 (1998).
Yan, S. Y. Cloning in Fish: Nucleocytoplasmic Hybrids (Educational and Cultural Press, Hongkong, 1998).
Wakamatsu, Y. et al. Fertile and diploid nuclear transplants derived from embryonic cells of a small laboratory fish, medaka (Oryzias latipes). Proc. Natl Acad. Sci. USA 98, 1071–1076 (2001).An impressive technical study in medaka that describes how nuclear transplantation can be used for the production of clonal fish.
Chen, S., Hong, Y. & Schartl, M. Development of a positive–negative selection procedure for gene targeting in fish cells. Aquaculture (in the press).
Ristoratore, F. et al. The midbrain–hindbrain boundary genetic cascade is activated ectopically in the diencephalon in response to the widespread expression of one of its components, the medaka gene Ol-eng2. Development 126, 3769–3779 (1999).
Nguyen, V. et al. Morphogenesis of the optic tectum in the medaka (Oryzias latipes): a morphological and molecular study, with special emphasis on cell proliferation. J. Comp. Neurol. 413, 385–404 (1999).
Baroiller, J. F., Guigen, Y. & Fostier, A. Endocrine and environmental aspects of sex differentiation in fish. Cell. Mol. Life Sci. 55, 910–931 (1999).A comprehensive overview that describes the regulation of differentiation of the male and female gonads in fish by endocrine factors or environmental influences.
Wada, H., Shimada, A., Fukamachi, S., Naruse, K. & Shima, A. Sex-linked inheritance of the lf locus in the medaka fish (Oryzias latipes). Zool. Sci. 15, 123–126 (1998).
Matsuda, M., Matsuda, C., Hamaguchi, S. & Sakaizumi, M. Identification of the sex chromosomes of the medaka, Oryzias latipes, by fluorescence in situ hybridization. Cytogenet. Cell Genet. 82, 257–262 (1998).
Matsuda, M., Sotoyama, S., Hamaguchi, S. & Sakaizumi, M. Male-specific recombination frequency in the sex chromosomes of the medaka, Oryzias latipes. Genet. Res. 73, 225–231 (1999).
Yamamoto, T. Artificial induction of functional sex-reversal in genotypic females of the medaka (Oryzias latipes). J. Exp. Zool. 137, 227–264 (1958).
Fukada, S., Tanaka, M., Iwaya, M., Nakajima, M. & Nagahama, Y. The SOX gene family and its expression during embryogenesis in the teleost fish, medaka (Oryzias latipes). Dev. Growth Differ. 37, 379–385 (1995).
Brunner, B. et al. Genomic organization and expression of the doublesex-related gene cluster in vertebrates and detection of putative regulatory regions for DMRT1. Genomics 77, 8–17 (2001).
Heisenberg, C. P. et al. A mutation in the Gsk3-binding domain of zebrafish Masterblind/Axin1 leads to a fate transformation of telencephalon and eyes to diencephalon. Genes Dev. 15, 1427–1434 (2001).
Simeone, A. Otx1 and Otx2 in the development and evolution of the mammalian brain. EMBO J. 17, 6790–6798 (1998).
Zuber, M. E., Perron, M., Philpott, A., Bang, A. & Harris, W. A. Giant eyes in Xenopus laevis by overexpression of XOptx2. Cell 98, 341–352 (1999).
Zhou, X., Hollemann, T., Pieler, T. & Gruss, P. Cloning and expression of xSix3, the Xenopus homologue of murine Six3. Mech. Dev. 91, 327–330 (2000).
Chiang, C. et al. Cyclopia and defective axial patterning in mice lacking Sonic Hedgehog gene function. Nature 383, 407–413 (1996).
Macdonald, R. et al. Midline signalling is required for Pax gene regulation and patterning of the eyes. Development 121, 3267–3278 (1995).
Ekker, S. C. et al. Patterning activities of vertebrate hedgehog proteins in the developing eye and brain. Curr. Biol. 5, 944–955 (1995).
Gritsman, K. et al. The EGF–CFC protein one-eyed pinhead is essential for nodal signaling. Cell 97, 121–132 (1999).
Varga, Z. M., Wegner, J. & Westerfield, M. Anterior movement of ventral diencephalic precursors separates the primordial eye field in the neural plate and requires cyclops. Development 126, 5533–5546 (1999).
Mathers, P. H. & Jamrich, M. Regulation of eye formation by the Rx and pax6 homeobox genes. Cell. Mol. Life Sci. 57, 186–194 (2000).
Andreazzoli, M., Gestri, G., Angeloni, D., Menna, E. & Barsacchi, G. Role of Xrx1 in Xenopus eye and anterior brain development. Development 126, 2451–2460 (1999).
Postlethwait, J. H. et al. Vertebrate genome evolution and the zebrafish gene map. Nature Genet. 18, 345–349 (1998).
Robinson-Rechavi, M., Marchant, O., Escriva, H. & Laudet, V. An ancestral whole-genome duplication may not have been responsible for the abundance of duplicated fish genes. Curr. Biol. 11, R458–R459 (2001).
Taylor, J. S., Van de Peer, Y., Braasch, I. & Meyer, A. Comparative genomics provides evidence for an ancient genome duplication event in fish. Phil. Trans. R. Soc. Lond. B 356, 1661–1679.
Force, A. et al. Preservation of duplicate genes by complementary degenerative mutations. Genetics 151, 1531–1545 (1999).Presentation of an elegant duplication–degeneration–complementation model that explains the unexpected complexity of fish genomes.
Matsuda, M. et al. Construction of a BAC library derived from the inbred Hd-rR strain of the teleost fish, Oryzias latipes. Genes Genet. Syst. 76, 61–63 (2001).
Gawantka, V. et al. Gene expression screening in Xenopus identifies molecular pathways, predicts gene function and provides a global view of embryonic patterning. Mech. Dev. 77, 95–141 (1998).
Henrich, T. & Wittbrodt, J. An in situ hybridization screen for the rapid isolation of differentially expressed genes. Dev. Genes Evol. 210, 28–33 (2000).
Nguyen, V., Joly, J. S. & Bourrat, F. An in situ screen for genes controlling cell proliferation in the optic tectum of the medaka (Oryzias latipes). Mech. Dev. 107, 55–67 (2001).
Shimoda, N. et al. Zebrafish genetic map with 2000 microsatellite markers. Genomics 58, 219–232 (1999).
Himmelbauer, H. et al. Complex probes for high-throughput parallel genetic mapping of genomic mouse BAC clones. Mamm. Genome 9, 611–619 (1998).
Nasevicius, A. & Ekker, S. C. Effective targeted gene 'knockdown' in zebrafish. Nature Genet. 26, 216–220 (2000).The key paper on the use of morpholino oligonucleotides in fish. Provides technical details and a perspective on where morpholino-based research will lead to.
Hinegardner, R. & Rosen, D. E. Cellular DNA content and the evolution of teleostean fishes. Am. Nat. 106, 621–644 (1972).
Lamatsch, D. K., Steinlein, C., Schmid, M. & Schartl, M. Noninvasive determination of genome size and ploidy level in fishes by flow cytometry: detection of triploid Poecilia formosa. Cytometry 39, 91–95 (2000).
Maier, D., Marte, B. M., Schaefer, W., Yu, Y. & Preiss, A. Drosophila evolution challenges postulated redundancy in the E(spl) gene complex. Proc. Natl Acad. Sci. USA 90, 5464–5468 (1993).
Iwamatsu, T. Stages of normal development in the medaka Oryzias latipes. Zool. Sci. 11, 825–839 (1994).
Westerfield, M. The Zebrafish Book (Univ. of Oregon Press, Eugene, Oregon, 1995).
Krone, A. & Wittbrodt, J. A simple and reliable protocol for cyropreservation of medaka (Oryzias latipes) spermatozoa. Fish Biol. J. Medaka 9, 47–48 (1997).
Aoki, K., Okamoto, M., Tatsumi, K. & Ishikawa, Y. Cryopreservation of medaka spermatozoa. Zool. Sci. 14, 641–644 (1997).
Hamaguchi, S. & Sakaizumi, M. Sexually differentiated mechanisms of sterility in interspecific hybrids between Oryzias latipes and O. curvinotus. J. Exp. Zool. 263, 323–329 (1992).
Nelson, J. S. Fishes of the World (John Wiley & Sons, Inc., New York, 1994).