Mechano-electrochemical modeling of lithium dendrite penetration in a solid-state electrolyte: Mechanism and suppression

Journal of Energy Storage - Tập 65 - Trang 107389 - 2023
Chen Lin1, Haihui Ruan2
1Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai, China
2Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, China

Tài liệu tham khảo

Manthiram, 2017, An outlook on lithium ion battery technology, ACS Cent. Sci., 3, 1063, 10.1021/acscentsci.7b00288 Li, 2019, Lithium-ion battery overcharging thermal characteristics analysis and an impedance-based electro-thermal coupled model simulation, Appl. Energy, 254, 10.1016/j.apenergy.2019.113574 Lamb, 2014, Thermal and overcharge abuse analysis of a redox shuttle for overcharge protection of LiFePO 4, J. Power Sources, 247, 1011, 10.1016/j.jpowsour.2013.08.044 Lamb, 2015, Failure propagation in multi-cell lithium ion batteries, J. Power Sources, 283, 517, 10.1016/j.jpowsour.2014.10.081 Liao, 2019, A survey of methods for monitoring and detecting thermal runaway of lithium-ion batteries, J. Power Sources, 436, 10.1016/j.jpowsour.2019.226879 Arora, 2016, Review of mechanical design and strategic placement technique of a robust battery pack for electric vehicles, Renew. Sust. Energ. Rev., 60, 1319, 10.1016/j.rser.2016.03.013 Liu, 2018, Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping, Nat. Energy, 3, 936, 10.1038/s41560-018-0180-6 Li, 2015, Solid electrolyte: the key for high-voltage lithium batteries, Adv. Energy Mater., 5, 10.1002/aenm.201570018 Zhu, 2015, Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations, ACS Appl. Mater. Interfaces, 7, 23685, 10.1021/acsami.5b07517 Richards, 2015, Interface stability in solid-state batteries, Chem. Mater., 28, 266, 10.1021/acs.chemmater.5b04082 Monroe, 2004, The effect of interfacial deformation on electrodeposition kinetics, J. Electrochem. Soc., 151, A880, 10.1149/1.1710893 Monroe, 2005, The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces, J. Electrochem. Soc., 152, A396, 10.1149/1.1850854 Lim, 2020, A review of challenges and issues concerning interfaces for all-solid-state batteries, Energy Storage Mater., 25, 224, 10.1016/j.ensm.2019.10.011 Cheng, 2017, Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte, Electrochim. Acta, 223, 85, 10.1016/j.electacta.2016.12.018 Hongahally Basappa, 2017, Grain boundary modification to suppress lithium penetration through garnet-type solid electrolyte, J. Power Sources, 363, 145, 10.1016/j.jpowsour.2017.07.088 Lewis, 2019, Chemo-mechanical challenges in solid-state batteries, Trends Chem., 1, 845, 10.1016/j.trechm.2019.06.013 Nagao, 2013, In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li2S–P2S5 solid electrolyte, Phys. Chem. Chem. Phys., 15, 18600, 10.1039/c3cp51059j Kerman, 2017, Review—practical challenges hindering the development of solid state Li ion batteries, J. Electrochem. Soc., 164, A1731, 10.1149/2.1571707jes Cheng, 2017, Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3 Zr2O12 ceramic electrolyte, Electrochim. Acta, 223, 85, 10.1016/j.electacta.2016.12.018 Swamy, 2018, Lithium metal penetration induced by electrodeposition through solid electrolytes: example in single-crystal Li6La3ZrTaO12 garnet, J. Electrochem. Soc., 165, A3648, 10.1149/2.1391814jes Chen, 2021, Research progress and application prospect of solid-state electrolytes in commercial lithium-ion power batteries, Energy Storage Mater., 35, 70, 10.1016/j.ensm.2020.11.017 Sun, 2021, Research progress on the interfaces of solid-state lithium metal batteries, J. Mater. Chem. A, 9, 9481, 10.1039/D1TA00467K Wu, 2021, In situ-formed dual-conductive protecting layer for dendrite-free Li metal anodes in all-solid-state batteries, Energy Technol., 9, 10.1002/ente.202100087 Lv, 2022, Suppressing lithium dendrites within inorganic solid-state electrolytes, Cell Rep. Phys. Sci., 3 Barai, 2017, Lithium dendrite growth mechanisms in polymer electrolytes and prevention strategies, Phys. Chem. Chem. Phys., 19, 20493, 10.1039/C7CP03304D Barai, 2020, The role of local inhomogeneities on dendrite growth in LLZO-based solid electrolytes, J. Electrochem. Soc., 167, 10.1149/1945-7111/ab9b08 Ahmad, 2017, Stability of electrodeposition at solid-solid interfaces and implications for metal anodes, Phys. Rev. Lett., 119, 10.1103/PhysRevLett.119.056003 Ren, 2015, Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte, Electrochem. Commun., 57, 27, 10.1016/j.elecom.2015.05.001 Sharafi, 2016, Characterizing the Li-Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density, J. Power Sources, 302, 135, 10.1016/j.jpowsour.2015.10.053 Cheng, 2016, Intergranular Li metal propagation through polycrystalline Li6.25Al0.25- La3Zr2O12 ceramic electrolyte, Electrochim. Acta, 223, 85, 10.1016/j.electacta.2016.12.018 Aguesse, 2017, Investigating the dendritic growth during full cell cycling of garnet electrolyte in direct contact with Li metal, ACS Appl. Mater. Interfaces, 9, 3808, 10.1021/acsami.6b13925 Ning, 2021, Visualizing plating-induced cracking in lithium-anode solid-electrolyte cells, Nat. Mater., 20, 1121, 10.1038/s41563-021-00967-8 Porz, 2017, Mechanism of lithium metal penetration through inorganic solid electrolytes, Adv. Energy Mater., 7, 10.1002/aenm.201701003 Klinsmann, 2019, Dendritic cracking in solid electrolytes driven by lithium insertion, J. Power Sources, 442, 10.1016/j.jpowsour.2019.227226 Tantratian, 2021, Unraveling the Li penetration mechanism in polycrystalline solid electrolytes, Adv. Energy Mater., 11, 10.1002/aenm.202003417 Yuan, 2021, Unlocking the electrochemical-mechanical coupling behaviors of dendrite growth and crack propagation in all-solid-state batteries, Adv. Energy Mater., 11, 2101807.1, 10.1002/aenm.202101807 Qi, 2020, A new general paradigm for understanding and preventing li metal penetration through solid electrolytes, Joule, 4, 1, 10.1016/j.joule.2020.10.009 Loew, 2019, Rate-dependent phase-field damage modeling of rubber and its experimental parameter identification, J. Mech. Phys. Solids, 127, 266, 10.1016/j.jmps.2019.03.022 Kuznetsov, 1999 Nguyen, 2016, On the choice of parameters in the phase field method for simulating crack initiation with experimental validation, Int. J. Fract., 197, 213, 10.1007/s10704-016-0082-1 Debierre, 2003, Phase-field approach for faceted solidification, Phys. Rev. E, 68, 10.1103/PhysRevE.68.041604 Fu, 2021, Stress regulation on atomic bonding and ionic diffusivity: mechanochemical effects in sulfide solid electrolytes, Energy Fuel, 35, 10210, 10.1021/acs.energyfuels.1c00488 LePage, 2019, Lithium mechanics: roles of strain rate and temperature and implications for lithium metal batteries, J. Electrochem. Soc., 166, A89, 10.1149/2.0221902jes Bazant, 2013, Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics, Acc. Chem. Res., 46, 1144, 10.1021/ar300145c Larche, 1982, The effect of self-stress on diffusion in solids, Acta Metall., 30, 1835, 10.1016/0001-6160(82)90023-2 Kim, 1999, Phase-field model for binary alloys, Phys. Rev. E, 60, 7186, 10.1103/PhysRevE.60.7186 Chen, 2015, Modulation ofdendritic patterns during electrodeposition: a nonlinear phase-field model, J. Power Sources, 300, 376, 10.1016/j.jpowsour.2015.09.055