Mechano-electrochemical modeling of lithium dendrite penetration in a solid-state electrolyte: Mechanism and suppression
Tài liệu tham khảo
Manthiram, 2017, An outlook on lithium ion battery technology, ACS Cent. Sci., 3, 1063, 10.1021/acscentsci.7b00288
Li, 2019, Lithium-ion battery overcharging thermal characteristics analysis and an impedance-based electro-thermal coupled model simulation, Appl. Energy, 254, 10.1016/j.apenergy.2019.113574
Lamb, 2014, Thermal and overcharge abuse analysis of a redox shuttle for overcharge protection of LiFePO 4, J. Power Sources, 247, 1011, 10.1016/j.jpowsour.2013.08.044
Lamb, 2015, Failure propagation in multi-cell lithium ion batteries, J. Power Sources, 283, 517, 10.1016/j.jpowsour.2014.10.081
Liao, 2019, A survey of methods for monitoring and detecting thermal runaway of lithium-ion batteries, J. Power Sources, 436, 10.1016/j.jpowsour.2019.226879
Arora, 2016, Review of mechanical design and strategic placement technique of a robust battery pack for electric vehicles, Renew. Sust. Energ. Rev., 60, 1319, 10.1016/j.rser.2016.03.013
Liu, 2018, Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping, Nat. Energy, 3, 936, 10.1038/s41560-018-0180-6
Li, 2015, Solid electrolyte: the key for high-voltage lithium batteries, Adv. Energy Mater., 5, 10.1002/aenm.201570018
Zhu, 2015, Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations, ACS Appl. Mater. Interfaces, 7, 23685, 10.1021/acsami.5b07517
Richards, 2015, Interface stability in solid-state batteries, Chem. Mater., 28, 266, 10.1021/acs.chemmater.5b04082
Monroe, 2004, The effect of interfacial deformation on electrodeposition kinetics, J. Electrochem. Soc., 151, A880, 10.1149/1.1710893
Monroe, 2005, The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces, J. Electrochem. Soc., 152, A396, 10.1149/1.1850854
Lim, 2020, A review of challenges and issues concerning interfaces for all-solid-state batteries, Energy Storage Mater., 25, 224, 10.1016/j.ensm.2019.10.011
Cheng, 2017, Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte, Electrochim. Acta, 223, 85, 10.1016/j.electacta.2016.12.018
Hongahally Basappa, 2017, Grain boundary modification to suppress lithium penetration through garnet-type solid electrolyte, J. Power Sources, 363, 145, 10.1016/j.jpowsour.2017.07.088
Lewis, 2019, Chemo-mechanical challenges in solid-state batteries, Trends Chem., 1, 845, 10.1016/j.trechm.2019.06.013
Nagao, 2013, In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li2S–P2S5 solid electrolyte, Phys. Chem. Chem. Phys., 15, 18600, 10.1039/c3cp51059j
Kerman, 2017, Review—practical challenges hindering the development of solid state Li ion batteries, J. Electrochem. Soc., 164, A1731, 10.1149/2.1571707jes
Cheng, 2017, Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3 Zr2O12 ceramic electrolyte, Electrochim. Acta, 223, 85, 10.1016/j.electacta.2016.12.018
Swamy, 2018, Lithium metal penetration induced by electrodeposition through solid electrolytes: example in single-crystal Li6La3ZrTaO12 garnet, J. Electrochem. Soc., 165, A3648, 10.1149/2.1391814jes
Chen, 2021, Research progress and application prospect of solid-state electrolytes in commercial lithium-ion power batteries, Energy Storage Mater., 35, 70, 10.1016/j.ensm.2020.11.017
Sun, 2021, Research progress on the interfaces of solid-state lithium metal batteries, J. Mater. Chem. A, 9, 9481, 10.1039/D1TA00467K
Wu, 2021, In situ-formed dual-conductive protecting layer for dendrite-free Li metal anodes in all-solid-state batteries, Energy Technol., 9, 10.1002/ente.202100087
Lv, 2022, Suppressing lithium dendrites within inorganic solid-state electrolytes, Cell Rep. Phys. Sci., 3
Barai, 2017, Lithium dendrite growth mechanisms in polymer electrolytes and prevention strategies, Phys. Chem. Chem. Phys., 19, 20493, 10.1039/C7CP03304D
Barai, 2020, The role of local inhomogeneities on dendrite growth in LLZO-based solid electrolytes, J. Electrochem. Soc., 167, 10.1149/1945-7111/ab9b08
Ahmad, 2017, Stability of electrodeposition at solid-solid interfaces and implications for metal anodes, Phys. Rev. Lett., 119, 10.1103/PhysRevLett.119.056003
Ren, 2015, Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte, Electrochem. Commun., 57, 27, 10.1016/j.elecom.2015.05.001
Sharafi, 2016, Characterizing the Li-Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density, J. Power Sources, 302, 135, 10.1016/j.jpowsour.2015.10.053
Cheng, 2016, Intergranular Li metal propagation through polycrystalline Li6.25Al0.25- La3Zr2O12 ceramic electrolyte, Electrochim. Acta, 223, 85, 10.1016/j.electacta.2016.12.018
Aguesse, 2017, Investigating the dendritic growth during full cell cycling of garnet electrolyte in direct contact with Li metal, ACS Appl. Mater. Interfaces, 9, 3808, 10.1021/acsami.6b13925
Ning, 2021, Visualizing plating-induced cracking in lithium-anode solid-electrolyte cells, Nat. Mater., 20, 1121, 10.1038/s41563-021-00967-8
Porz, 2017, Mechanism of lithium metal penetration through inorganic solid electrolytes, Adv. Energy Mater., 7, 10.1002/aenm.201701003
Klinsmann, 2019, Dendritic cracking in solid electrolytes driven by lithium insertion, J. Power Sources, 442, 10.1016/j.jpowsour.2019.227226
Tantratian, 2021, Unraveling the Li penetration mechanism in polycrystalline solid electrolytes, Adv. Energy Mater., 11, 10.1002/aenm.202003417
Yuan, 2021, Unlocking the electrochemical-mechanical coupling behaviors of dendrite growth and crack propagation in all-solid-state batteries, Adv. Energy Mater., 11, 2101807.1, 10.1002/aenm.202101807
Qi, 2020, A new general paradigm for understanding and preventing li metal penetration through solid electrolytes, Joule, 4, 1, 10.1016/j.joule.2020.10.009
Loew, 2019, Rate-dependent phase-field damage modeling of rubber and its experimental parameter identification, J. Mech. Phys. Solids, 127, 266, 10.1016/j.jmps.2019.03.022
Kuznetsov, 1999
Nguyen, 2016, On the choice of parameters in the phase field method for simulating crack initiation with experimental validation, Int. J. Fract., 197, 213, 10.1007/s10704-016-0082-1
Debierre, 2003, Phase-field approach for faceted solidification, Phys. Rev. E, 68, 10.1103/PhysRevE.68.041604
Fu, 2021, Stress regulation on atomic bonding and ionic diffusivity: mechanochemical effects in sulfide solid electrolytes, Energy Fuel, 35, 10210, 10.1021/acs.energyfuels.1c00488
LePage, 2019, Lithium mechanics: roles of strain rate and temperature and implications for lithium metal batteries, J. Electrochem. Soc., 166, A89, 10.1149/2.0221902jes
Bazant, 2013, Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics, Acc. Chem. Res., 46, 1144, 10.1021/ar300145c
Larche, 1982, The effect of self-stress on diffusion in solids, Acta Metall., 30, 1835, 10.1016/0001-6160(82)90023-2
Kim, 1999, Phase-field model for binary alloys, Phys. Rev. E, 60, 7186, 10.1103/PhysRevE.60.7186
Chen, 2015, Modulation ofdendritic patterns during electrodeposition: a nonlinear phase-field model, J. Power Sources, 300, 376, 10.1016/j.jpowsour.2015.09.055