Mechanistic modeling of the bioconcentration of (super)hydrophobic compounds in Hyalella azteca
Tóm tắt
Từ khóa
Tài liệu tham khảo
Arnot JA, Gobas FAPC (2004) A food web bioaccumulation model for organic chemicals in aquatic ecosystems. Environ Toxicol Chem 23:2343–2355. https://doi.org/10.1897/03-438
Barker Jørgensen C, Møhlenberg F, Sten-Knudsen O (1986) Nature of relation between ventilation and oxygen consumption in filter feeders. Mar Ecol Prog Ser 29:73–88. https://doi.org/10.3354/meps029073
Bittermann K, Goss KU (2017) Predicting apparent passive permeability of Caco-2 and MDCK cell-monolayers: a mechanistic model. PLoS ONE 12:1–20. https://doi.org/10.1371/journal.pone.0190319
Böhm L, Schlechtriem C, Düring RA (2016) Sorption of highly hydrophobic organic chemicals to organic matter relevant for fish bioconcentration studies. Environ Sci Technol 50:8316–8323. https://doi.org/10.1021/acs.est.6b01778
Brown TN, Arnot JA, Wania F (2012) Iterative fragment selection: a group contribution approach to predicting fish biotransformation half-lives. Environ Sci Technol 46:8253–8260. https://doi.org/10.1021/es301182a
Burkhard LP (2000) Estimating dissolved organic carbon partition coefficients for nonionic organic chemicals. Environ Sci Technol 34:4663–4668. https://doi.org/10.1021/es001269l
Cantu MA, Gobas FAPC (2021) Bioaccumulation of dodecamethylcyclohexasiloxane (D6) in fish. Chemosphere 281. https://doi.org/10.1016/j.chemosphere.2021.130948
Chen CC, Kuo DTF (2018) Bioconcentration model for non-ionic, polar, and ionizable organic compounds in amphipod. Environ Toxicol Chem 37:1378–1386. https://doi.org/10.1002/etc.4081
Christie AE, Cieslak MC, Roncalli V et al (2018) Prediction of a peptidome for the ecotoxicological model Hyalellaazteca (Crustacea; Amphipoda) using a de novo assembled transcriptome. Mar Genomics 38:67–88. https://doi.org/10.1016/j.margen.2017.12.003
de Wolf W, Comber M, Douben P et al (2007) Animal use replacement, reduction, and refinement: development of an integrated testing strategy for bioconcentration of chemicals in fish. Integr Environ Assess Manag 3:3–17. https://doi.org/10.1897/1551-3793(2007)3[3:AURRAR]2.0.CO;2
EAS-E Suite (2022) (Ver.0.95 - BETA; release Feb.; 2022). Developed by ARC Arnot Research and Consulting Inc., Toronto, ON, Canada. www.eas-e-suite.com. Last accessed 24 Jan 2023
Erickson RJ, McKim JM (1990) A model for exchange of organic chemicals at fish gills: flow and diffusion limitations. Aquat Toxicol 18:175–197. https://doi.org/10.1016/0166-445X(90)90001-6
Everitt S, MacPherson S, Brinkmann M et al (2020) Effects of weathered sediment-bound dilbit on freshwater amphipods (Hyalellaazteca). Aquat Toxicol 228:105630. https://doi.org/10.1016/j.aquatox.2020.105630
Fredrick WS, Ravichandran S (2012) Hemolymph proteins in marine crustaceans. Asian Pac J Trop Biomed 2:496–502. https://doi.org/10.1016/S2221-1691(12)60084-7
Johanif N, Huff Hartz KE, Figueroa AE et al (2021) Bioaccumulation potential of chlorpyrifos in resistant Hyalellaazteca: implications for evolutionary toxicology. Environ Pollut 289:117900. https://doi.org/10.1016/j.envpol.2021.117900
Johnke R (1973) The influence of season upon the oxygen consumption of two populations of the freshwater 460 amphipod Hyalella aztecahyalella azteca. Master thesis (ocm60457213), Calif State Univ Fresno. http://hdl.handle.net/20.500.12680
Kelly BC, Gobas FAPC, McLachlan MS (2004) Intestinal absorption and biomagnification of organic contaminants in fish, wildlife, and humans. Environ Toxicol Chem 23:2324–2336. https://doi.org/10.1897/03-545
Kosfeld V, Fu Q, Ebersbach I et al (2020) Comparison of alternative methods for bioaccumulation assessment: scope and limitations of in vitro depletion assays with rainbow trout and bioconcentration tests in the freshwater amphipod Hyalellaazteca. Environ Toxicol Chem 39:1813–1825. https://doi.org/10.1002/etc.4791
Landrum PF, Scavia D (1983) Influence of sediment on anthracene uptake, depuration, and biotransformation by the amphipod Hyalellaazteca. Can J Fish Aquat Sci 40:298–305. https://doi.org/10.1139/f83-044
Landrum PF, Steevens JA, Gossiaux DC et al (2004) Time-dependent lethal body residues for the toxicity of pentachlorobenzene to Hyalellaazteca. Environ Toxicol Chem 23:1335–1343. https://doi.org/10.1897/03-164
Landrum PF, Steevens JA, McElroy M et al (2005) Time-dependent toxicity of dichlorodiphenyldichloroethylene to Hyalellaazteca. Environ Toxicol Chem 24:211–218. https://doi.org/10.1897/04-055R.1
Larisch W, Brown TN, Goss KU (2017) A toxicokinetic model for fish including multiphase sorption features. Environ Toxicol Chem 36:1538–1546. https://doi.org/10.1002/etc.3677
Larisch W, Goss KU (2018) Modelling oral up-take of hydrophobic and super-hydrophobic chemicals in fish. Environ Sci Process Impacts 20:98–104. https://doi.org/10.1039/c7em00495h
Lee JH, Landrum PF, Koh CH (2002) Toxicokinetics and time-dependent PAH toxicity in the amphipod Hyalellaazteca. Environ Sci Technol 36:3124–3130. https://doi.org/10.1021/es011201l
Lotufo GR, Landrum PF, Gedeon ML et al (2000) Comparative toxicity and toxicokinetics of DDT and its major metabolites in freshwater amphipods. Environ Toxicol Chem 19:368–379. https://doi.org/10.1002/etc.5620190217
Nuutinen S, Landrum PF, Schuler LJ et al (2003) Toxicokinetics of organic contaminants in Hyalellaazteca. Arch Environ Contam Toxicol 44:467–475. https://doi.org/10.1007/s00244-002-2127-x
OECD (2012) Test No. 305: Bioaccumulation in fish: aqueous and dietary exposure. https://www.oecd-ilibrary.org/environment/test-no-305-bioaccumulation-in-fish-aqueous-and-dietary-exposure_9789264185296-e. Accessed 30 Mar 2022
Othman MS, Pascoe D (2001) Growth, development and reproduction of Hyalellaazteca (Saussure, 1858) in laboratory culture. Crustaceana 74:171–181. https://doi.org/10.1163/156854001750096274
Regan S, Hynds P, Flynn R (2017) An overview of dissolved organic carbon in groundwater and implications for drinking water safety. Hydrogeol J 25:959–967. https://doi.org/10.1007/s10040-017-1583-3
Schlechtriem C, Kampe S, Bruckert HJ et al (2019) Bioconcentration studies with the freshwater amphipod Hyalellaazteca: are the results predictive of bioconcentration in fish? Environ Sci Pollut Res 26:1628–1641. https://doi.org/10.1007/s11356-018-3677-4
Schlechtriem C, Kosfeld V, Pandard P, Rauert C (2021) Validation of the hyalella azteca bioconcentration test (HYBIT). Abstract 4.03.13 from Setac Europe 31st Annual Meeting, Sevilla, Spain
Schlechtriem C, Kühr S, Müller C (2022) Development of a bioaccumulation test using Hyalella azteca, Forschungskennzahl 3718 67 401 0, UBA-FB000548/ENG. Umweltbundesamt
Schuler LJ, Landrum PF, Lydy MJ (2004) Time-dependent toxicity of fluoranthene to freshwater invertebrates and the role of biotransformation on lethal body residues. Environ Sci Technol 38:6247–6255. https://doi.org/10.1021/es049844z
Trowell JJ, Gobas FAPC, Moore MM, Kennedy CJ (2018) Estimating the bioconcentration factors of hydrophobic organic compounds from biotransformation rates using rainbow trout hepatocytes. Arch Environ Contam Toxicol 75:295–305. https://doi.org/10.1007/s00244-018-0508-z