Mechanistic insight into the improved photocatalytic degradation of dyes for an ultrathin coating of SiO2 on TiO2 (P25) nanoparticles
Tài liệu tham khảo
Fujishima, 1972, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238, 37, 10.1038/238037a0
Reza, 2015, Parameters affecting the photocatalytic degradation of dyes using TiO2: a review, Appl. Water Sci., 7, 1569, 10.1007/s13201-015-0367-y
Carp, 2004, Photoinduced reactivity of titanium dioxide, Prog. Solid State Chem., 32, 33, 10.1016/j.progsolidstchem.2004.08.001
Trawiński, 2019, Rapid degradation of clozapine by heterogeneous photocatalysis. Comparison with direct photolysis, kinetics, identification of transformation products and scavenger study, Sci. Total Environ., 665, 557, 10.1016/j.scitotenv.2019.02.124
Fujishima, 2000, Titanium dioxide photocatalysis, J. Photochem. Photobiol. C, 1, 1, 10.1016/S1389-5567(00)00002-2
Nosaka, 2016, Understanding hydroxyl radical (•OH) generation processes in photocatalysis, ACS Energy Lett., 1, 356, 10.1021/acsenergylett.6b00174
Zhang, 2014, Mechanism of the OH radical generation in photocatalysis with TiO2 of different crystalline types, J. Phys. Chem. C, 118, 10824, 10.1021/jp501214m
Levchuk, 2016, Photocatalytic activity of TiO2 films immobilized on aluminum foam by atomic layer deposition technique, J. Photochem. Photobiol. A-Chem., 328, 16, 10.1016/j.jphotochem.2016.03.034
Lin, 2017, Location of photocatalytic oxidation processes on anatase titanium dioxide, Catal. Sci. Technol., 7, 441, 10.1039/C6CY02214F
Mortazavian, 2019, Optimization of photocatalytic degradation of acid blue 113 and acid red 88 textile dyes in a UV-C/TiO2 suspension system: application of response surface methodology (RSM), Catalysts, 9, 360, 10.3390/catal9040360
Motegh, 2012, Photocatalytic-reactor efficiencies and simplified expressions to assess their relevance in kinetic experiments, Chem. Eng. J., 207-208, 607, 10.1016/j.cej.2012.07.023
Moniz, 2015, Charge transfer and photocatalytic activity in CuO/TiO2 nanoparticle heterojunctions synthesised through a rapid, one-pot, microwave solvothermal route, ChemCatChem, 7, 1659, 10.1002/cctc.201500315
Nasr, 2019, Photocatalytic degradation of acetaminophen over Ag, Au and Pt loaded TiO2 using solar light, J. Photochem. Photobiol. A, 374, 185, 10.1016/j.jphotochem.2019.01.032
Liang, 2011, Photocatalysis of Ag-loaded TiO2 nanotube arrays formed by atomic layer deposition, J. Phys. Chem. C, 115, 9498, 10.1021/jp202111p
Moniz, 2014, Fe2O3–TiO2 nanocomposites for enhanced charge separation and photocatalytic activity, Chem. – Eur. J., 20, 15571, 10.1002/chem.201403489
Ganeshraja, 2016, Facile synthesis of iron oxide coupled and doped titania nanocomposites: tuning of physicochemical and photocatalytic properties, RSC Adv., 6, 72791, 10.1039/C6RA13212J
Benz, 2020
Dong, 2015, Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: a review, RSC Adv., 5, 14610, 10.1039/C4RA13734E
Hoffmann, 1995, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95, 69, 10.1021/cr00033a004
Lee, 2019, Strategies to improve the photocatalytic activity of TiO2: 3D nanostructuring and heterostructuring with graphitic carbon nanomaterials, Nanoscale, 11, 7025, 10.1039/C9NR01260E
Gaya, 2014, 91
Romero-Morán, 2021, Influence of selected reactive oxygen species on the photocatalytic activity of TiO2/SiO2 composite coatings processed at low temperature, Appl. Catal. B, 291, 119685, 10.1016/j.apcatb.2020.119685
Benz, 2021, Controlled growth of ultrasmall Cu2O clusters on TiO2 nanoparticles by atmospheric-pressure atomic layer deposition for enhanced photocatalytic activity, Nanotechnology, 32, 425601, 10.1088/1361-6528/ac10e2
Ullah, 2015, Enhanced photocatalytic properties of core@shell SiO2@TiO2 nanoparticles, Appl. Catal. B, 179, 333, 10.1016/j.apcatb.2015.05.036
Williams, 2012, Atomic layer deposition of anatase TiO2 coating on silica particles: growth, characterization and evaluation as photocatalysts for methyl orange degradation and hydrogen production, J. Mater. Chem., 22, 20203, 10.1039/c2jm33446a
Ekka, 2016, Titania coated silica nanocomposite prepared via encapsulation method for the degradation of Safranin-O dye from aqueous solution: optimization using statistical design, Water Resour. Ind., 22, 100071, 10.1016/j.wri.2016.08.001
Risa, 2008, Controlled photocatalytic ability of titanium dioxide particle by coating with nanoporous silica, Chem. Lett., 37, 76, 10.1246/cl.2008.76
Kim, 2019, Titania nanoparticle-loaded mesoporous silica synthesized through layer-by-layer assembly for the photodegradation of sodium dodecylbenzenesulfonate, Appl. Surf. Sci., 490, 38, 10.1016/j.apsusc.2019.05.327
Grover, 2017, SiO2-coated pure anatase TiO2 catalysts for enhanced photo-oxidation of naphthalene and anthracene, Particuology, 34, 156, 10.1016/j.partic.2017.03.001
Giesriegl, 2019, Rate-limiting steps of dye degradation over titania-silica core-shell photocatalysts, Catalysts, 9, 10.3390/catal9070583
Nussbaum, 2012, Ultra-thin SiO2 layers on TiO2: improved photocatalysis by enhancing products’ desorption, Phys. Chem. Chem. Phys., 14, 3392, 10.1039/c2cp23202b
Oguma, 2012, Effects of silica-coating on the photoinduced hole formation and decomposition activity of titanium dioxide photocatalysts under UV irradiation, Catal. Letters, 142, 1474, 10.1007/s10562-012-0914-1
Ide, 2011, Molecular selective photocatalysis by TiO2/nanoporous silica core/shell particulates, J. Colloid Interface Sci., 358, 245, 10.1016/j.jcis.2011.02.018
Ren, 2020, Robust TiO2 nanorods-SiO2 core-shell coating with high-performance self-cleaning properties under visible light, Appl. Surf. Sci., 509, 145377, 10.1016/j.apsusc.2020.145377
Wang, 2020, Rhodamine B removal of TiO2@SiO2 core-shell nanocomposites coated to buildings, Cryst., 10, 80, 10.3390/cryst10020080
Yu, 2020, Soft-template assisted construction of superstructure TiO2/SiO2/g-C3N4 hybrid as efficient visible-light photocatalysts to degrade berberine in seawater via an adsorption-photocatalysis synergy and mechanism insight, Appl. Catal. B, 268, 118751, 10.1016/j.apcatb.2020.118751
Siwińska-Ciesielczyk, 2020, The performance of multicomponent oxide systems based on TiO2, ZrO2 and SiO2 in the photocatalytic degradation of Rhodamine B: mechanism and kinetic studies, Colloids Surf. A, 586, 124272, 10.1016/j.colsurfa.2019.124272
Anderson, 1995, An improved photocatalyst of TiO2/SiO2 prepared by a sol-gel synthesis, J. Phys. Chem., 99, 9882, 10.1021/j100024a033
Yuan, 2016, Origin of enhancing the photocatalytic performance of TiO2 for artificial photoreduction of CO2 through a SiO2 coating strategy, J. Phys. Chem. C, 120, 265, 10.1021/acs.jpcc.5b08893
Gong, 2017, New insights into the photocatalytic activity of 3-D core–shell P25@silica nanocomposites: impact of mesoporous coating, Dalton Trans., 46, 4994, 10.1039/C7DT00797C
Hu, 2012, Preparation of SiO2-coated TiO2 composite materials with enhanced photocatalytic activity under UV light, Bull. Korean Chem. Soc., 33, 1895, 10.5012/bkcs.2012.33.6.1895
Guo, 2020, Tuning the photocatalytic activity of TiO2 nanoparticles by ultrathin SiO2 films grown by low-temperature atmospheric pressure atomic layer deposition, Appl. Surf. Sci., 530, 147244, 10.1016/j.apsusc.2020.147244
Beetstra, 2009, Atmospheric pressure process for coating particles using atomic layer deposition, Chem. Vap. Deposition, 15, 227, 10.1002/cvde.200906775
van Ommen, 2019, Atomic layer deposition on particulate materials, Mater. Today Chem., 14
Baur, 1977, Silicon-oxygen bond lengths, bridging angles Si-O-Si and synthetic low tridymite, Acta Crystallogr. Section B, 33, 2615, 10.1107/S0567740877009029
Flury, 2003, Dyes as tracers for vadose zone hydrology, Rev. Geophys., 41, 10.1029/2001RG000109
Flury, 1995, Tracer characteristics of brilliant blue FCF, Soil Sci. Soc. Am. J., 59, 22, 10.2136/sssaj1995.03615995005900010003x
Kosmulski, 1998, Positive electrokinetic charge of silica in the presence of chlorides, J. Colloid Interface Sci., 208, 543, 10.1006/jcis.1998.5859
Ahmed, 2010, Advances in heterogeneous photocatalytic degradation of phenols and dyes in wastewater: a review, Water Air Soil Pollut., 215, 3, 10.1007/s11270-010-0456-3
Sökmen, 2002, Decolourising textile wastewater with modified titania: the effects of inorganic anions on the photocatalysis, J. Photochem. Photobiol. A, 147, 77, 10.1016/S1010-6030(01)00627-X
El-Toni, 2006, Control of silica shell thickness and microporosity of titania-silica core-shell type nanoparticles to depress the photocatalytic activity of titania, J. Colloid Interface Sci., 300, 123, 10.1016/j.jcis.2006.03.073
Cloarec, 2016, pH driven addressing of silicon nanowires onto Si3N4/SiO2 micro-patterned surfaces, Nanotechnology, 27, 295602, 10.1088/0957-4484/27/29/295602
Zeng, 2013, Influence of TiO2 surface properties on water pollution treatment and photocatalytic activity, Bull. Korean Chem. Soc., 34, 953, 10.5012/bkcs.2013.34.3.953
Konecoglu, 2015, Photocatalytic degradation of textile dye CI basic yellow 28 wastewater by Degussa P25 based TiO2, Adv. Environ. Res., 4, 25, 10.12989/aer.2015.4.1.025
Simonsen, 2009, Influence of the OH groups on the photocatalytic activity and photoinduced hydrophilicity of microwave assisted sol–gel TiO2 film, Appl. Surf. Sci., 255, 8054, 10.1016/j.apsusc.2009.05.013
Narayanasamy, 2005, Mechanism of hydroxyl radical generation from a silica surface: molecular orbital calculations, J. Phys. Chem. B, 109, 21796, 10.1021/jp0543025
Gaya, 2014, 1
Lopes, 2015, Synthesis of BiVO4 via oxidant peroxo-method: insights into the photocatalytic performance and degradation mechanism of pollutants, New J. Chem., 39, 6231, 10.1039/C5NJ00984G
Panganamala, 1976, Role of hydroxyl radical scavengers dimethyl sulfoxide, alcohols and methional in the inhibition of prostaglandin biosynthesis, Prostaglandins, 11, 599, 10.1016/0090-6980(76)90063-0
Yoshimura, 1999, Evaluation of free radical scavenging activities of antioxidants with an H2O2/NaOH/DMSO system by electron spin resonance, J. Agric. Food Chem., 47, 4653, 10.1021/jf990422w
Zinder, 1978, Dimethyl sulfoxide as an electron acceptor for anaerobic growth, Arch. Microbiol., 116, 35, 10.1007/BF00408731
Beliaev, 2005, Global transcriptome analysis of Shewanella oneidensis MR-1 exposed to different terminal electron acceptors, J. Bacteriol., 187, 7138, 10.1128/JB.187.20.7138-7145.2005
Puangpetch, 2009, Hydrogen production from photocatalytic water splitting over mesoporous-assembled SrTiO3 nanocrystal-based photocatalysts, J. Mol. Catal. A Chem., 312, 97, 10.1016/j.molcata.2009.07.012
Jones, 2019, A comparison of photocatalytic reforming reactions of methanol and triethanolamine with Pd supported on titania and graphitic carbon nitride, Appl. Catal. B, 240, 373, 10.1016/j.apcatb.2017.01.042
Miyashita, 2001, Spectrum response of the vacuum-deposited SiO2/TiO2 multilyaer film with improved photo-catalytic activity, J. Mater. Sci. Lett., 20, 2137, 10.1023/A:1013728415415
Guan, 2004, Hydrophilic property of SiO2-TiO2 overlayer films and TiO2/SiO2 mixing films, Trans. Nonferrous Metals Soc. China (English Edition), 14, 251
Guo, 2018, Suppressing the photocatalytic activity of TiO2 nanoparticles by extremely thin Al2O3 films grown by gas-phase deposition at ambient conditions, Nanomaterials, 8, 61, 10.3390/nano8020061