Mechanistic insight into the improved photocatalytic degradation of dyes for an ultrathin coating of SiO2 on TiO2 (P25) nanoparticles

Chemical Engineering Journal Advances - Tập 10 - Trang 100288 - 2022
Dominik Benz1, Hao Van Bui2, Hubertus T. Hintzen3, Michiel T. Kreutzer4, J. Ruud van Ommen1
1Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, Netherlands
2Faculty of Materials Science and Engineering, Phenikaa University, Yen Nghia Ward, Ha-Dong District, Hanoi, 12116, Vietnam
3Fundamental Aspects of Materials and Energy, Delft University of Technology, Mekelweg 15, 2629 JB Delft, Netherlands
4Faculty of Architecture, Delft University of Technology, Julianalaan 134, 2628 BL Delft, Netherlands

Tài liệu tham khảo

Fujishima, 1972, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238, 37, 10.1038/238037a0 Reza, 2015, Parameters affecting the photocatalytic degradation of dyes using TiO2: a review, Appl. Water Sci., 7, 1569, 10.1007/s13201-015-0367-y Carp, 2004, Photoinduced reactivity of titanium dioxide, Prog. Solid State Chem., 32, 33, 10.1016/j.progsolidstchem.2004.08.001 Trawiński, 2019, Rapid degradation of clozapine by heterogeneous photocatalysis. Comparison with direct photolysis, kinetics, identification of transformation products and scavenger study, Sci. Total Environ., 665, 557, 10.1016/j.scitotenv.2019.02.124 Fujishima, 2000, Titanium dioxide photocatalysis, J. Photochem. Photobiol. C, 1, 1, 10.1016/S1389-5567(00)00002-2 Nosaka, 2016, Understanding hydroxyl radical (•OH) generation processes in photocatalysis, ACS Energy Lett., 1, 356, 10.1021/acsenergylett.6b00174 Zhang, 2014, Mechanism of the OH radical generation in photocatalysis with TiO2 of different crystalline types, J. Phys. Chem. C, 118, 10824, 10.1021/jp501214m Levchuk, 2016, Photocatalytic activity of TiO2 films immobilized on aluminum foam by atomic layer deposition technique, J. Photochem. Photobiol. A-Chem., 328, 16, 10.1016/j.jphotochem.2016.03.034 Lin, 2017, Location of photocatalytic oxidation processes on anatase titanium dioxide, Catal. Sci. Technol., 7, 441, 10.1039/C6CY02214F Mortazavian, 2019, Optimization of photocatalytic degradation of acid blue 113 and acid red 88 textile dyes in a UV-C/TiO2 suspension system: application of response surface methodology (RSM), Catalysts, 9, 360, 10.3390/catal9040360 Motegh, 2012, Photocatalytic-reactor efficiencies and simplified expressions to assess their relevance in kinetic experiments, Chem. Eng. J., 207-208, 607, 10.1016/j.cej.2012.07.023 Moniz, 2015, Charge transfer and photocatalytic activity in CuO/TiO2 nanoparticle heterojunctions synthesised through a rapid, one-pot, microwave solvothermal route, ChemCatChem, 7, 1659, 10.1002/cctc.201500315 Nasr, 2019, Photocatalytic degradation of acetaminophen over Ag, Au and Pt loaded TiO2 using solar light, J. Photochem. Photobiol. A, 374, 185, 10.1016/j.jphotochem.2019.01.032 Liang, 2011, Photocatalysis of Ag-loaded TiO2 nanotube arrays formed by atomic layer deposition, J. Phys. Chem. C, 115, 9498, 10.1021/jp202111p Moniz, 2014, Fe2O3–TiO2 nanocomposites for enhanced charge separation and photocatalytic activity, Chem. – Eur. J., 20, 15571, 10.1002/chem.201403489 Ganeshraja, 2016, Facile synthesis of iron oxide coupled and doped titania nanocomposites: tuning of physicochemical and photocatalytic properties, RSC Adv., 6, 72791, 10.1039/C6RA13212J Benz, 2020 Dong, 2015, Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: a review, RSC Adv., 5, 14610, 10.1039/C4RA13734E Hoffmann, 1995, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95, 69, 10.1021/cr00033a004 Lee, 2019, Strategies to improve the photocatalytic activity of TiO2: 3D nanostructuring and heterostructuring with graphitic carbon nanomaterials, Nanoscale, 11, 7025, 10.1039/C9NR01260E Gaya, 2014, 91 Romero-Morán, 2021, Influence of selected reactive oxygen species on the photocatalytic activity of TiO2/SiO2 composite coatings processed at low temperature, Appl. Catal. B, 291, 119685, 10.1016/j.apcatb.2020.119685 Benz, 2021, Controlled growth of ultrasmall Cu2O clusters on TiO2 nanoparticles by atmospheric-pressure atomic layer deposition for enhanced photocatalytic activity, Nanotechnology, 32, 425601, 10.1088/1361-6528/ac10e2 Ullah, 2015, Enhanced photocatalytic properties of core@shell SiO2@TiO2 nanoparticles, Appl. Catal. B, 179, 333, 10.1016/j.apcatb.2015.05.036 Williams, 2012, Atomic layer deposition of anatase TiO2 coating on silica particles: growth, characterization and evaluation as photocatalysts for methyl orange degradation and hydrogen production, J. Mater. Chem., 22, 20203, 10.1039/c2jm33446a Ekka, 2016, Titania coated silica nanocomposite prepared via encapsulation method for the degradation of Safranin-O dye from aqueous solution: optimization using statistical design, Water Resour. Ind., 22, 100071, 10.1016/j.wri.2016.08.001 Risa, 2008, Controlled photocatalytic ability of titanium dioxide particle by coating with nanoporous silica, Chem. Lett., 37, 76, 10.1246/cl.2008.76 Kim, 2019, Titania nanoparticle-loaded mesoporous silica synthesized through layer-by-layer assembly for the photodegradation of sodium dodecylbenzenesulfonate, Appl. Surf. Sci., 490, 38, 10.1016/j.apsusc.2019.05.327 Grover, 2017, SiO2-coated pure anatase TiO2 catalysts for enhanced photo-oxidation of naphthalene and anthracene, Particuology, 34, 156, 10.1016/j.partic.2017.03.001 Giesriegl, 2019, Rate-limiting steps of dye degradation over titania-silica core-shell photocatalysts, Catalysts, 9, 10.3390/catal9070583 Nussbaum, 2012, Ultra-thin SiO2 layers on TiO2: improved photocatalysis by enhancing products’ desorption, Phys. Chem. Chem. Phys., 14, 3392, 10.1039/c2cp23202b Oguma, 2012, Effects of silica-coating on the photoinduced hole formation and decomposition activity of titanium dioxide photocatalysts under UV irradiation, Catal. Letters, 142, 1474, 10.1007/s10562-012-0914-1 Ide, 2011, Molecular selective photocatalysis by TiO2/nanoporous silica core/shell particulates, J. Colloid Interface Sci., 358, 245, 10.1016/j.jcis.2011.02.018 Ren, 2020, Robust TiO2 nanorods-SiO2 core-shell coating with high-performance self-cleaning properties under visible light, Appl. Surf. Sci., 509, 145377, 10.1016/j.apsusc.2020.145377 Wang, 2020, Rhodamine B removal of TiO2@SiO2 core-shell nanocomposites coated to buildings, Cryst., 10, 80, 10.3390/cryst10020080 Yu, 2020, Soft-template assisted construction of superstructure TiO2/SiO2/g-C3N4 hybrid as efficient visible-light photocatalysts to degrade berberine in seawater via an adsorption-photocatalysis synergy and mechanism insight, Appl. Catal. B, 268, 118751, 10.1016/j.apcatb.2020.118751 Siwińska-Ciesielczyk, 2020, The performance of multicomponent oxide systems based on TiO2, ZrO2 and SiO2 in the photocatalytic degradation of Rhodamine B: mechanism and kinetic studies, Colloids Surf. A, 586, 124272, 10.1016/j.colsurfa.2019.124272 Anderson, 1995, An improved photocatalyst of TiO2/SiO2 prepared by a sol-gel synthesis, J. Phys. Chem., 99, 9882, 10.1021/j100024a033 Yuan, 2016, Origin of enhancing the photocatalytic performance of TiO2 for artificial photoreduction of CO2 through a SiO2 coating strategy, J. Phys. Chem. C, 120, 265, 10.1021/acs.jpcc.5b08893 Gong, 2017, New insights into the photocatalytic activity of 3-D core–shell P25@silica nanocomposites: impact of mesoporous coating, Dalton Trans., 46, 4994, 10.1039/C7DT00797C Hu, 2012, Preparation of SiO2-coated TiO2 composite materials with enhanced photocatalytic activity under UV light, Bull. Korean Chem. Soc., 33, 1895, 10.5012/bkcs.2012.33.6.1895 Guo, 2020, Tuning the photocatalytic activity of TiO2 nanoparticles by ultrathin SiO2 films grown by low-temperature atmospheric pressure atomic layer deposition, Appl. Surf. Sci., 530, 147244, 10.1016/j.apsusc.2020.147244 Beetstra, 2009, Atmospheric pressure process for coating particles using atomic layer deposition, Chem. Vap. Deposition, 15, 227, 10.1002/cvde.200906775 van Ommen, 2019, Atomic layer deposition on particulate materials, Mater. Today Chem., 14 Baur, 1977, Silicon-oxygen bond lengths, bridging angles Si-O-Si and synthetic low tridymite, Acta Crystallogr. Section B, 33, 2615, 10.1107/S0567740877009029 Flury, 2003, Dyes as tracers for vadose zone hydrology, Rev. Geophys., 41, 10.1029/2001RG000109 Flury, 1995, Tracer characteristics of brilliant blue FCF, Soil Sci. Soc. Am. J., 59, 22, 10.2136/sssaj1995.03615995005900010003x Kosmulski, 1998, Positive electrokinetic charge of silica in the presence of chlorides, J. Colloid Interface Sci., 208, 543, 10.1006/jcis.1998.5859 Ahmed, 2010, Advances in heterogeneous photocatalytic degradation of phenols and dyes in wastewater: a review, Water Air Soil Pollut., 215, 3, 10.1007/s11270-010-0456-3 Sökmen, 2002, Decolourising textile wastewater with modified titania: the effects of inorganic anions on the photocatalysis, J. Photochem. Photobiol. A, 147, 77, 10.1016/S1010-6030(01)00627-X El-Toni, 2006, Control of silica shell thickness and microporosity of titania-silica core-shell type nanoparticles to depress the photocatalytic activity of titania, J. Colloid Interface Sci., 300, 123, 10.1016/j.jcis.2006.03.073 Cloarec, 2016, pH driven addressing of silicon nanowires onto Si3N4/SiO2 micro-patterned surfaces, Nanotechnology, 27, 295602, 10.1088/0957-4484/27/29/295602 Zeng, 2013, Influence of TiO2 surface properties on water pollution treatment and photocatalytic activity, Bull. Korean Chem. Soc., 34, 953, 10.5012/bkcs.2013.34.3.953 Konecoglu, 2015, Photocatalytic degradation of textile dye CI basic yellow 28 wastewater by Degussa P25 based TiO2, Adv. Environ. Res., 4, 25, 10.12989/aer.2015.4.1.025 Simonsen, 2009, Influence of the OH groups on the photocatalytic activity and photoinduced hydrophilicity of microwave assisted sol–gel TiO2 film, Appl. Surf. Sci., 255, 8054, 10.1016/j.apsusc.2009.05.013 Narayanasamy, 2005, Mechanism of hydroxyl radical generation from a silica surface: molecular orbital calculations, J. Phys. Chem. B, 109, 21796, 10.1021/jp0543025 Gaya, 2014, 1 Lopes, 2015, Synthesis of BiVO4 via oxidant peroxo-method: insights into the photocatalytic performance and degradation mechanism of pollutants, New J. Chem., 39, 6231, 10.1039/C5NJ00984G Panganamala, 1976, Role of hydroxyl radical scavengers dimethyl sulfoxide, alcohols and methional in the inhibition of prostaglandin biosynthesis, Prostaglandins, 11, 599, 10.1016/0090-6980(76)90063-0 Yoshimura, 1999, Evaluation of free radical scavenging activities of antioxidants with an H2O2/NaOH/DMSO system by electron spin resonance, J. Agric. Food Chem., 47, 4653, 10.1021/jf990422w Zinder, 1978, Dimethyl sulfoxide as an electron acceptor for anaerobic growth, Arch. Microbiol., 116, 35, 10.1007/BF00408731 Beliaev, 2005, Global transcriptome analysis of Shewanella oneidensis MR-1 exposed to different terminal electron acceptors, J. Bacteriol., 187, 7138, 10.1128/JB.187.20.7138-7145.2005 Puangpetch, 2009, Hydrogen production from photocatalytic water splitting over mesoporous-assembled SrTiO3 nanocrystal-based photocatalysts, J. Mol. Catal. A Chem., 312, 97, 10.1016/j.molcata.2009.07.012 Jones, 2019, A comparison of photocatalytic reforming reactions of methanol and triethanolamine with Pd supported on titania and graphitic carbon nitride, Appl. Catal. B, 240, 373, 10.1016/j.apcatb.2017.01.042 Miyashita, 2001, Spectrum response of the vacuum-deposited SiO2/TiO2 multilyaer film with improved photo-catalytic activity, J. Mater. Sci. Lett., 20, 2137, 10.1023/A:1013728415415 Guan, 2004, Hydrophilic property of SiO2-TiO2 overlayer films and TiO2/SiO2 mixing films, Trans. Nonferrous Metals Soc. China (English Edition), 14, 251 Guo, 2018, Suppressing the photocatalytic activity of TiO2 nanoparticles by extremely thin Al2O3 films grown by gas-phase deposition at ambient conditions, Nanomaterials, 8, 61, 10.3390/nano8020061