Mechanisms underlying the modulation of L-type Ca2+ channel by hydrogen peroxide in guinea pig ventricular myocytes

Lei Yang1, Jianjun Xu1, Etsuko Minobe1, Lifeng Yu1, Rui Feng1, Asako Kameyama1, Kazuto Yazawa1, Masaki Kameyama1
1Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka 8-35-1, Kagoshima, 890-8544, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Doerries C, Grote K, Hilfiker-Kleiner D, Luchtefeld M, Schaefer A, Holland SM, Sorrentino S, Manes C, Schieffer B, Drexler H, Landmesser U (2007) Critical role of the NAD(P)H oxidase subunit p47phox for left ventricular remodeling/dysfunction and survival after myocardial infarction. Circ Res 100:894–903

Kinugawa S, Tsutsui H, Hayashidani S, Ide T, Suematsu N, Satoh S, Utsumi H, Takeshita A (2000) Treatment with dimethylthiourea prevents left ventricular remodeling and failure after experimental myocardial infarction in mice: role of oxidative stress. Circ Res 87:392–398

Erickson JR, Joiner ML, Guan X, Kutschke W, Yang J, Oddis CV, Bartlett RK, Lowe JS, O’Donnell SE, Aykin-Burns N, Zimmerman MC, Zimmerman K, Ham AJ, Weiss RM, Spitz DR, Shea MA, Colbran RJ, Mohler PJ, Anderson ME (2008) A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation. Cell 133:462–474

Halliwell B (1993) The role of oxygen radicals in human disease, with particular reference to the vascular system. Haemostasis 23:118–126

Duan J, Moffat MP (1992) Potential cellular mechanisms of hydrogen peroxide-induced cardiac arrhythmias. J Cardiovasc Pharmacol 19:593–601

Murphy E, Steenbergen C (2008) Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev 88:581–609

Zima AV, Blatter LA (2006) Redox regulation of cardiac calcium channels and transporters. Cardiovasc Res 71:310–321

Yan X, Gao S, Tang M, Xi J, Gao L, Zhu M, Luo H, Hu X, Zheng Y, Hescheler J, Liang H (2011) Adenylyl cyclase/cAMP-PKA-mediated phosphorylation of basal L-type Ca2+ channels in mouse embryonic ventricular myocytes. Cell Calcium 50:433–443

Anderson ME (2004) Calmodulin kinase and L-type calcium channels; a recipe for arrhythmias? Trends Cardiovasc Med 14:152–161

Wang M, Tashiro M, Berlin JR (2004) Regulation of L-type calcium current by intracellular magnesium in rat cardiac myocytes. J Physiol 555:383–396

Wu L, Bauer CS, Zhen XG, Xie C, Yang J (2002) Dual regulation of voltage-gated calcium channels by PtdIns(4,5)P2. Nature 419:947–952

Xu JJ, Hao LY, Kameyama A, Kameyama M (2004) Calmodulin reverses rundown of L-type Ca2+ channels in guinea pig ventricular myocytes. Am J Physiol Cell Physiol 287:C1717–C1724

Chen RX, Liu F, Li Y, Liu GA (2012) Neuromedin S increases L-type Ca2+ channel currents through Giα-protein and phospholipase C-dependent novel protein kinase C delta pathway in adult rat ventricular myocytes. Cell Physiol Biochem 30:618–630

Hool LC (2008) Evidence for the regulation of L-type Ca2+ channels in the heart by reactive oxygen species: mechanism for mediating pathology. Clin Exp Pharmacol Physiol 35:229–234

Santos CX, Anilkumar N, Zhang M, Brewer AC, Shah AM (2011) Redox signaling in cardiac myocytes. Free Radic Biol Med 50:777–793

Viola HM, Arthur PG, Hool LC (2007) Transient exposure to hydrogen peroxide causes an increase in mitochondria-derived superoxide as a result of sustained alteration in L-type Ca2+ channel function in the absence of apoptosis in ventricular myocytes. Circ Res 100:1036–1044

Fearon IM, Palmer AC, Balmforth AJ, Ball SG, Varadi G, Peers C (1999) Modulation of recombinant human cardiac L-type Ca2+ channel alpha1C subunits by redox agents and hypoxia. J Physiol 514:629–637

Hu H, Chiamvimonvat N, Yamagishi T, Marban E (1997) Direct inhibition of expressed cardiac L-type Ca2+ channels by S-nitrosothiol nitric oxide donors. Circ Res 81:742–752

Tang H, Viola HM, Filipovska A, Hool LC (2011) Cav1.2 calcium channel is glutathionylated during oxidative stress in guinea pig and ischemic human heart. Free Radic Biol Med 51:1501–1511

Song YH, Cho H, Ryu SY, Yoon JY, Park SH, Noh CI, Lee SH, Ho WK (2010) L-type Ca2+ channel facilitation mediated by H2O2-induced activation of CaMKII in rat ventricular myocytes. J Mol Cell Cardiol 48:773–780

Hao LY, Xu JJ, Minobe E, Kameyama A, Kameyama M (2008) Calmodulin kinase II activation is required for the maintenance of basal activity of L-type Ca2+ channels in guinea pig ventricular myocytes. J Pharmacol Sci 108:290–300

Hao LY, Wang WY, Minobe E, Han DY, Xu JJ, Kameyama A, Kameyama M (2009) The distinct roles of calmodulin and calmodulin kinase II in the reversal of run-down of L-type Ca2+ channels in guinea pig ventricular myocytes. J Pharmacol Sci 111:416–425

Wang WY, Hao LY, Minobe E, Saud ZA, Han DY, Kameyama M (2009) CaMKII phosphorylates a threonine residue in the C-terminal tail of Cav1.2 Ca2+ channel and modulates the interaction of the channel with calmodulin. J Physiol Sci 59:283–290

Han DY, Minobe E, Wang WY, Guo F, Xu JJ, Hao LY, Kameyama M (2010) Calmodulin and Ca2+-dependent facilitation and inactivation of the Cav1.2 Ca2+ channels in guinea pig ventricular myocytes. J Pharmacol Sci. 112:310–319

Guo F, Minobe E, Yazawa K, Asmara H, Bai XY, Han DY, Hao LY, Kameyama M (2010) Both N- and C-lobes of calmodulin are required for Ca2+-dependent regulations of CaV1.2 Ca2+ channels. Biochem Biophys Res Commun 391:1170–1176

Minobe E, Asmara H, Saud ZA, Kameyama M (2011) Calpastatin domain L is a partial agonist of the calmodulin-binding site for channel activation in Cav1.2 Ca2+ channels. J Biol Chem 286:39013–39022

Yazawa K, Kaibara M, Ohara M, Kameyama M (1990) An improved method for isolating cardiac myocytes useful for patch-clamp studies. Jpn J Physiol 40:157–163

Ferrero P, Said M, Sánchez G, Vittone L, Valverde C, Donoso P, Mattiazzi A, Mundiña-Weilenmann C (2007) Ca2+/calmodulin kinase II increases ryanodine binding and Ca2+-induced sarcoplasmic reticulum Ca2+ release kinetics during β-adrenergic stimulation. J Mol Cell Cardiol 43:281–291

Yao L, Fan P, Jiang Z, Viatchenko-Karpinski S, Wu Y, Kornyeyev D, Hirakawa R, Budas GR, Rajamani S, Shryock JC, Belardinelli L (2011) Nav1.5-dependent persistent Na+ influx activates CaMKII in rat ventricular myocytes and N1325S mice. Am J Physiol Cell Physiol 301:C577–C586

Lacampagne A, Duittoz A, Bolaños P, Peineau N, Argibay JA (1995) Effect of sulfhydryl oxidation on ionic and gating currents associated with L-type calcium channels in isolated guinea pig ventricular myocytes. Cardiovasc Res 30:799–806

Hool LC (2000) Hypoxia increases the sensitivity of the L-type Ca2+ current to beta-adrenergic receptor stimulation via a C2 region-containing protein kinase C isoform. Circ Res 87:1164–1171

Hool LC (2001) Hypoxia alters the sensitivity of the L-type Ca2+ channel to alpha-adrenergic receptor stimulation in the presence of beta-adrenergic receptor stimulation. Circ Res 88:1036–1043

Fearon IM, Palmer AC, Balmforth AJ, Ball SG, Mikala G, Schwartz A, Peers C (1997) Hypoxia inhibits the recombinant alpha 1C subunit of the human cardiac L-type Ca2+ channel. J Physiol 500:551–556

Yamaoka K, Yakehiro M, Yuki T, Fujii H, Seyama I (2000) Effect of sulfhydryl reagents on the regulatory system of the L-type Ca2+ channel in frog ventricular myocytes. Pflugers Arch 440:207–215

Hool LC, Corry B (2007) Redox control of calcium channels: from mechanisms to therapeutic opportunities. Antioxid Redox Signal 9:409–435