Cơ chế kháng thuốc và các dấu hiệu sinh học dự đoán phản ứng với liệu pháp nhắm mục tiêu và liệu pháp miễn dịch trong bệnh hắc tố di căn

Current Opinion in Oncology - Tập 32 Số 2 - Trang 91-97 - 2020
Samia Mourah1,2, Baptiste Louveau1,2, Nicolas Dumaz2
1Pharmacogenomics Department, Assistance Publique-Hôpitaux de Paris, Hopital Saint Louis
2Université de Paris, INSERM UMRS 976, Paris, France

Tóm tắt

Mục đích của bài tổng quan Nhờ vào các chất ức chế kinase được kích hoạt bởi mitogen (MAPKi) và các chất ức chế điểm kiểm soát miễn dịch (ICI), đã có những tiến bộ lớn trong lĩnh vực điều trị bệnh hắc tố. Tuy nhiên, thành công lâu dài vẫn còn hiếm hoi do sự phát triển của kháng thuốc. Hiểu được những cơ chế kháng thuốc này và xác định các dấu hiệu sinh học gen dự đoán hiện nay là những điểm then chốt trong quản lý điều trị cho bệnh nhân hắc tố. Những phát hiện gần đây Nhiều cơ chế kháng thuốc đa dạng và phức tạp đối với MAPKi hoặc ICI đã được phát hiện trong vài năm qua. Việc thiếu phản ứng có thể được thúc đẩy bởi đột biến và các sự kiện không phải đột biến trong tế bào u, cũng như bởi những thay đổi trong vi môi trường khối u. Tế bào hắc tố cũng có khả năng chuyển đổi nhanh chóng kiểu hình phân tử và tế bào của chúng, dẫn đến khả năng kháng thuốc ban đầu. Profiling phân tử khối u và phân tích tế bào khối u lưu hành rất thu hút sự quan tâm như là các dấu hiệu sinh học dự đoán cũng như nghiên cứu những thay đổi miễn dịch và vi sinh vật trong bệnh nhân điều trị bằng ICI. Tóm tắt Kháng thuốc đối với MAPKi và ICI là một điểm then chốt trong quản lý điều trị cho bệnh nhân hắc tố di căn. Các dấu hiệu sinh học đã được xác nhận dự đoán phản ứng với liệu pháp hiện đang rất cần thiết để tiến về y học cá thể hóa. Các phương pháp điều trị kết hợp được hướng dẫn bởi việc hiểu biết các cơ chế kháng thuốc sẽ có tầm quan trọng lớn trong tương lai của liệu pháp điều trị hắc tố.

Từ khóa


Tài liệu tham khảo

Salgia, 2018, The genetic/nongenetic duality of drug ‘resistance’ in cancer, Trends Cancer, 4, 110, 10.1016/j.trecan.2018.01.001

Moriceau, 2015, Tunable-combinatorial mechanisms of acquired resistance limit the efficacy of BRAF/MEK cotargeting but result in melanoma drug addiction, Cancer Cell, 27, 240, 10.1016/j.ccell.2014.11.018

Dietrich, 2018, Wild-type KRAS is a novel therapeutic target for melanoma contributing to primary and acquired resistance to BRAF inhibition, Oncogene, 37, 897, 10.1038/onc.2017.391

Stark, 2015, miR-514a regulates the tumour suppressor NF1 and modulates BRAFi sensitivity in melanoma, Oncotarget, 6, 17753, 10.18632/oncotarget.3924

Doudican, 2017, Inhibition of the CRAF/prohibitin interaction reverses CRAF-dependent resistance to vemurafenib, Oncogene, 36, 423, 10.1038/onc.2016.214

Johannessen, 2010, COT drives resistance to RAF inhibition through MAP kinase pathway reactivation, Nature, 468, 968, 10.1038/nature09627

Gruosso, 2015, MAP3K8/TPL-2/COT is a potential predictive marker for MEK inhibitor treatment in high-grade serous ovarian carcinomas, Nat Commun, 6, 8583, 10.1038/ncomms9583

Wagle, 2014, MAP kinase pathway alterations in BRAF-mutant melanoma patients with acquired resistance to combined RAF/MEK inhibition, Cancer Discov, 4, 61, 10.1158/2159-8290.CD-13-0631

Long, 2014, Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma, N Engl J Med, 371, 1877, 10.1056/NEJMoa1406037

Zuo, 2018, AXL/AKT axis mediated-resistance to BRAF inhibitor depends on PTEN status in melanoma, Oncogene, 37, 3275, 10.1038/s41388-018-0205-4

Paraiso, 2011, PTEN loss confers BRAF inhibitor resistance to melanoma cells through the suppression of BIM expression, Cancer Res, 71, 2750, 10.1158/0008-5472.CAN-10-2954

Villanueva, 2010, Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K, Cancer Cell, 18, 683, 10.1016/j.ccr.2010.11.023

Boussemart, 2014, eIF4F is a nexus of resistance to anti-BRAF and anti-MEK cancer therapies, Nature, 513, 105, 10.1038/nature13572

Gajos-Michniewicz, 2019, Role of miRNAs in melanoma metastasis, Cancers, 11, 326, 10.3390/cancers11030326

Díaz-Martínez, 2018, miR-204-5p and miR-211-5p contribute to BRAF inhibitor resistance in melanoma, Cancer Res, 78, 1017, 10.1158/0008-5472.CAN-17-1318

Fattore, 2019, Reprogramming miRNAs global expression orchestrates development of drug resistance in BRAF mutated melanoma, Cell Death Differ, 26, 1267, 10.1038/s41418-018-0205-5

Fattore, 2017, MicroRNAs in melanoma development and resistance to target therapy, Oncotarget, 8, 22262, 10.18632/oncotarget.14763

Liu, 2018, The role of autophagy in the resistance to BRAF inhibition in BRAF-mutated melanoma, Targ Oncol, 13, 437, 10.1007/s11523-018-0565-2

Ma, 2014, Targeting ER stress–induced autophagy overcomes BRAF inhibitor resistance in melanoma, J Clin Invest, 124, 1406, 10.1172/JCI70454

Cerezo, 2017, New anticancer molecules targeting HSPA5/BIP to induce endoplasmic reticulum stress, autophagy and apoptosis, Autophagy, 13, 216, 10.1080/15548627.2016.1246107

Wang, 2018, An acquired vulnerability of drug-resistant melanoma with therapeutic potential, Cell, 173, 1413, 10.1016/j.cell.2018.04.012

Ahmed, 2018, Microenvironment-driven dynamic heterogeneity and phenotypic plasticity as a mechanism of melanoma therapy resistance, Front Oncol, 8, 173, 10.3389/fonc.2018.00173

Gray-Schopfer, 2007, Tumor necrosis factor-α blocks apoptosis in melanoma cells when BRAF signaling is inhibited, Cancer Res, 67, 122, 10.1158/0008-5472.CAN-06-1880

Straussman, 2012, Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion, Nature, 487, 500, 10.1038/nature11183

Kaur, 2016, sFRP2 in the aged microenvironment drives melanoma metastasis and therapy resistance, Nature, 532, 250, 10.1038/nature17392

Hirata, 2015, Intravital imaging reveals how BRAF inhibition generates drug-tolerant microenvironments with high integrin β1/FAK signaling, Cancer Cell, 27, 574, 10.1016/j.ccell.2015.03.008

Boshuizen, 2018, Cooperative targeting of melanoma heterogeneity with an AXL antibody-drug conjugate and BRAF/MEK inhibitors, Nat Med, 24, 203, 10.1038/nm.4472

Miskolczi, 2018, Collagen abundance controls melanoma phenotypes through lineage-specific microenvironment sensing, Oncogene, 37, 3166, 10.1038/s41388-018-0209-0

Fisher, 2017, Inhibition of YAP function overcomes BRAF inhibitor resistance in melanoma cancer stem cells, Oncotarget, 8, 110257, 10.18632/oncotarget.22628

Smith, 2017, Targeting endothelin receptor signalling overcomes heterogeneity driven therapy failure, EMBO Mol Med, 9, 1011, 10.15252/emmm.201607156

Tsoi, 2018, Multistage differentiation defines melanoma subtypes with differential vulnerability to drug-induced iron-dependent oxidative stress, Cancer Cell, 33, 890, 10.1016/j.ccell.2018.03.017

Rambow, 2018, Toward minimal residual disease-directed therapy in melanoma, Cell, 174, 843, 10.1016/j.cell.2018.06.025

Chapman, 2011, Improved survival with vemurafenib in melanoma with BRAF V600E mutation, N Engl J Med, 364, 2507, 10.1056/NEJMoa1103782

Hauschild, 2012, Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial, Lancet, 380, 358, 10.1016/S0140-6736(12)60868-X

Long, 2015, Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: a multicentre, double-blind, phase 3 randomised controlled trial, Lancet, 386, 444, 10.1016/S0140-6736(15)60898-4

Trunzer, 2013, Pharmacodynamic effects and mechanisms of resistance to vemurafenib in patients with metastatic melanoma, J Clin Oncol, 31, 1767, 10.1200/JCO.2012.44.7888

Wagle, 2018, A transcriptional MAPK Pathway Activity Score (MPAS) is a clinically relevant biomarker in multiple cancer types, NPJ Precis Oncol, 2, 7, 10.1038/s41698-018-0051-4

Louveau, 2019, A targeted genomic alteration analysis predicts survival of melanoma patients under BRAF inhibitors, Oncotarget, 10, 1669, 10.18632/oncotarget.26707

Wongchenko, 2017, Gene expression profiling in BRAF-mutated melanoma reveals patient subgroups with poor outcomes to vemurafenib that may be overcome by cobimetinib plus vemurafenib, Clin Cancer Res, 23, 5238, 10.1158/1078-0432.CCR-17-0172

Yan, 2019, Genomic features of exceptional response in vemurafenib ± cobimetinib-treated patients with BRAFV600-mutated metastatic melanoma, Clin Cancer Res, 25, 3239, 10.1158/1078-0432.CCR-18-0720

Louveau, 2019, Baseline genomic features in BRAFV600-mutated metastatic melanoma patients treated with BRAF inhibitor + MEK inhibitor in routine care, Cancers, 11, 1203, 10.3390/cancers11081203

Santiago-Walker, 2016, Correlation of BRAF mutation status in circulating-free DNA and tumor and association with clinical outcome across four BRAFi and MEKi clinical trials, Clin Cancer Res, 22, 567, 10.1158/1078-0432.CCR-15-0321

Louveau, 2017, Clinical value of early detection of circulating tumour DNA-BRAF(V600mut) in patients with metastatic melanoma treated with a BRAF inhibitor, ESMO Open, 2, e000173, 10.1136/esmoopen-2017-000173

Sanmamed, 2015, Quantitative cell-free circulating BRAFV600E mutation analysis by use of droplet digital PCR in the follow-up of patients with melanoma being treated with BRAF inhibitors, Clin Chem, 61, 297, 10.1373/clinchem.2014.230235

Knol, 2016, Clinical significance of BRAF mutation status in circulating tumor DNA of metastatic melanoma patients at baseline, Exp Dermatol, 25, 783, 10.1111/exd.13065

Gray, 2015, Circulating tumor DNA to monitor treatment response and detect acquired resistance in patients with metastatic melanoma, Oncotarget, 6, 42008, 10.18632/oncotarget.5788

Sharma, 2017, Primary, adaptive, and acquired resistance to cancer immunotherapy, Cell, 168, 707, 10.1016/j.cell.2017.01.017

McGranahan, 2016, Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade, Science, 351, 1463, 10.1126/science.aaf1490

Sade-Feldman, 2017, Resistance to checkpoint blockade therapy through inactivation of antigen presentation, Nat Commun, 8, 1136, 10.1038/s41467-017-01062-w

Zaretsky, 2016, Mutations associated with acquired resistance to PD-1 blockade in melanoma, N Engl J Med, 375, 819, 10.1056/NEJMoa1604958

Shukla, 2015, Comprehensive analysis of cancer-associated somatic mutations in class I HLA genes, Nat Biotechnol, 33, 1152, 10.1038/nbt.3344

Giannakis, 2016, Genomic correlates of immune-cell infiltrates in colorectal carcinoma, Cell Rep, 15, 857, 10.1016/j.celrep.2016.03.075

Hugo, 2016, Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma, Cell, 165, 35, 10.1016/j.cell.2016.02.065

Rizvi, 2015, Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer, Science, 348, 124, 10.1126/science.aaa1348

Samstein, 2019, Tumor mutational load predicts survival after immunotherapy across multiple cancer types, Nat Genet, 51, 202, 10.1038/s41588-018-0312-8

Spranger, 2015, Melanoma-intrinsic β-catenin signalling prevents antitumour immunity, Nature, 523, 231, 10.1038/nature14404

Manguso, 2017, In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target, Nature, 547, 413, 10.1038/nature23270

Thommen, 2015, Progression of lung cancer is associated with increased dysfunction of T cells defined by coexpression of multiple inhibitory receptors, Cancer Immunol Res, 3, 1344, 10.1158/2326-6066.CIR-15-0097

Brahmer, 2010, Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates, J Clin Oncol, 28, 3167, 10.1200/JCO.2009.26.7609

Daud, 2016, Programmed death-ligand 1 expression and response to the anti-programmed death 1 antibody pembrolizumab in melanoma, J Clin Oncol, 34, 4102, 10.1200/JCO.2016.67.2477

Larkin, 2015, Combined nivolumab and ipilimumab or monotherapy in untreated melanoma, N Engl J Med, 373, 1270, 10.1056/NEJMoa1504030

Weber, 2015, Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial, Lancet Oncol, 16, 375, 10.1016/S1470-2045(15)70076-8

Madore, 2015, PD-L1 expression in melanoma shows marked heterogeneity within and between patients: implications for anti-PD-1/PD-L1 clinical trials, Pigment Cell Melanoma Res, 28, 245, 10.1111/pcmr.12340

Yearley, 2017, PD-L2 expression in human tumors: relevance to anti-PD-1 therapy in cancer, Clin Cancer Res, 23, 3158, 10.1158/1078-0432.CCR-16-1761

Shin, 2017, Primary resistance to PD-1 blockade mediated by JAK1/2 mutations, Cancer Discov, 7, 188, 10.1158/2159-8290.CD-16-1223

Ascierto, 2017, Transcriptional mechanisms of resistance to anti-PD-1 therapy, Clin Cancer Res, 23, 3168, 10.1158/1078-0432.CCR-17-0270

Huang, 2017, T-cell invigoration to tumour burden ratio associated with anti-PD-1 response, Nature, 545, 60, 10.1038/nature22079

Sade-Feldman, 2018, Defining T cell states associated with response to checkpoint immunotherapy in melanoma, Cell, 175, 998, 10.1016/j.cell.2018.10.038

Van Allen, 2015, Genomic correlates of response to CTLA-4 blockade in metastatic melanoma, Science, 350, 207, 10.1126/science.aad0095

Snyder, 2014, Genetic basis for clinical response to CTLA-4 blockade in melanoma, N Engl J Med, 371, 2189, 10.1056/NEJMoa1406498

Johnson, 2016, Targeted next generation sequencing identifies markers of response to PD-1 blockade, Cancer Immunol Res, 4, 959, 10.1158/2326-6066.CIR-16-0143

Roh, 2017, Integrated molecular analysis of tumor biopsies on sequential CTLA-4 and PD-1 blockade reveals markers of response and resistance, Sci Transl Med, 9, 10.1126/scitranslmed.aah3560

Buchhalter, 2019, Size matters: dissecting key parameters for panel-based tumor mutational burden analysis: panel-based TMB detection, Int J Cancer, 144, 848, 10.1002/ijc.31878

Forschner, 2019, Tumor mutation burden and circulating tumor DNA in combined CTLA-4 and PD-1 antibody therapy in metastatic melanoma – results of a prospective biomarker study, J Immunother Cancer, 7, 180, 10.1186/s40425-019-0659-0

Pitt, 2016, Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-intrinsic and -extrinsic factors, Immunity, 44, 1255, 10.1016/j.immuni.2016.06.001

Routy, 2018, Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors, Science, 359, 91, 10.1126/science.aan3706

Gopalakrishnan, 2018, Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients, Science, 359, 97, 10.1126/science.aan4236

Matson, 2018, The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients, Science, 359, 104, 10.1126/science.aao3290

Lee, 2017, Circulating tumour DNA predicts response to anti-PD1 antibodies in metastatic melanoma, Ann Oncol, 28, 1130, 10.1093/annonc/mdx026

Herbreteau, 2018, Quantitative monitoring of circulating tumor DNA predicts response of cutaneous metastatic melanoma to anti-PD1 immunotherapy, Oncotarget, 9, 25265, 10.18632/oncotarget.25404