Mechanisms of processing speed training and transfer effects across the adult lifespan: protocol of a multi-site cognitive training study

Claudia C. von Bastian1, Alice Reinhartz2, Robert Udale1, Stéphanie Grégoire3, Mehdi Essounni3, Sylvie Belleville3, Tilo Strobach2
1Department of Psychology, University of Sheffield, 1 Vicar Lane, Sheffield, S1 2LT, UK
2Medical School Hamburg, Hamburg, Germany
3Centre de Recherche de L’Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, Canada

Tóm tắt

Abstract Background In recent years, cognitive training has gained popularity as a cost-effective and accessible intervention aiming at compensating for or even counteracting age-related cognitive declines during adulthood. Whereas the evidence for the effectiveness of cognitive training in general is inconsistent, processing speed training has been a notable successful exception, showing promising generalized benefits in untrained tasks and everyday cognitive functioning. The goal of this study is to investigate why and when processing speed training can lead to transfer across the adult lifespan. Specifically, we will test (1) whether training-induced changes in the rate of evidence accumulation underpin transfer to cognitive performance in untrained contexts, and (2) whether these transfer effects increase with stronger attentional control demands of the training tasks. Methods We will employ a multi-site, longitudinal, double-blinded and actively controlled study design with a target sample size of N = 400 adult participants between 18 and 85 years old. Participants will be randomly assigned to one of three processing speed training interventions with varying attentional control demands (choice reaction time, switching, or dual tasks) which will be compared to an active control group training simple reaction time tasks with minimal attentional control demands. All groups will complete 10 home-based training sessions comprising three tasks. Training gains, near transfer to the untrained tasks of the other groups, and far transfer to working memory, inhibitory control, reasoning, and everyday cognitive functioning will be assessed in the laboratory directly before, immediately after, and three months after training (i.e., pretest, posttest, and follow-up, respectively). We will estimate the rate of evidence accumulation (drift rate) with diffusion modeling and conduct latent-change score modeling for hypothesis testing. Discussion This study will contribute to identifying the cognitive processes that change when training speeded tasks with varying attentional control demands across the adult lifespan. A better understanding of how processing speed training affects specific cognitive mechanisms will enable researchers to maximize the effectiveness of cognitive training in producing broad transfer to psychologically meaningful everyday life outcomes. Trial registration Open Science Framework Registries, registration https://doi.org/10.17605/OSF.IO/J5G7E; date of registration: 9 May 2022.

Từ khóa


Tài liệu tham khảo

Craik FIM, Bialystok E. Cognition through the lifespan: mechanisms of change. Trends Cogn Sci. 2006;10(3):131–8.

Diehl M. Everyday competence in later life: current status and future directions. Gerontologist. 1998;38(4):422–33.

von Bastian CC, Belleville S, Udale RC, Reinhartz A, Essounni M, Strobach T. Mechanisms underlying training-induced cognitive change. Nat Rev Psychol. 2022;1(1):30–41.

von Bastian CC, Langer N, Jäncke L, Oberauer K. Effects of working memory training in young and old adults. Mem Cognit. 2013;41(4):611–24.

De Simoni C, von Bastian CC. Working memory updating and binding training: Bayesian evidence supporting the absence of transfer. J Exp Psychol Gen. 2018;147(6):829–58.

Guye S, von Bastian CC. Working memory training in older adults: Bayesian evidence supporting the absence of transfer. Psychol Aging. 2017;32(8):732–46.

Edwards JD, Fausto BA, Tetlow AM, Corona RT, Valdés EG. Systematic review and meta-analyses of useful field of view cognitive training. Neurosci Biobehav Rev. 2018;84:72–91.

Strobach T, Karbach J. Cognitive training an overview of features and applications. Berlin: Springer; 2021.

Kail R, Salthouse TA. Processing speed as a mental capacity. Acta Physiol. 1994;86(2–3):199–225.

Schmiedek F, Oberauer K, Wilhelm O, Süß H-M, Wittmann WW. Individual differences in components of reaction time distributions and their relations to working memory and intelligence. J Exp Psychol Gen. 2007;136(3):414–29.

Sheppard LD, Vernon PA. Intelligence and speed of information-processing: a review of 50 years of research. Personal Individ Differ. 2008;44(3):535–51.

Salthouse TA. The processing-speed theory of adult age differences in cognition. Psychol Rev. 1996;103(3):403–28.

Strobach T. The dual-task practice advantage: Empirical evidence and cognitive mechanisms. Psychon Bull Rev. 2020;27(1):3–14.

Takeuchi H, Kawashima R. Effects of processing speed training on cognitive functions and neural systems. Rev Neurosci. 2012;23(3):289–301.

Bier B, Ouellet É, Belleville S. Computerized attentional training and transfer with virtual reality: effect of age and training type. Neuropsychology. 2018;32(5):597–614.

von Bastian CC, Blais C, Brewer GA, Gyurkovics M, Hedge C, Kałamała P, et al. Advancing the understanding of individual differences in attentional control: theoretical, methodological, and analytical considerations. (manuscript in preparation) 2020.

Cepeda NJ, Blackwell KA, Munakata Y. Speed isn’t everything: complex processing speed measures mask individual differences and developmental changes in executive control. Dev Sci. 2013;16(2):269–86.

Koch I, Poljac E, Müller H, Kiesel A. Cognitive structure, flexibility, and plasticity in human multitasking—an integrative review of dual-task and task-switching research. Psychol Bull. 2018;144(6):557–83.

von Bastian CC, Druey MD. Shifting between mental sets: an individual differences approach to commonalities and differences of task switching components. J Exp Psychol Gen. 2017;146(9):1266–85.

Kiesel A, Steinhauser M, Wendt M, Falkenstein M, Jost K, Philipp AM, et al. Control and interference in task switching—a review. Psychol Bull. 2010;136(5):849–74.

Taatgen NA. The nature and transfer of cognitive skills. Psychol Rev. 2013;120(3):439–71.

Strobach T, Frensch P, Müller H, Schubert T. Evidence for the acquisition of dual-task coordination skills in older adults. Acta Physiol (Oxf). 2015;160:104–16.

Ratcliff R. A theory of memory retrieval. Psychol Rev. 1978;85(2):59–108.

Schubert A-L, Frischkorn GT, Hagemann D, Voss A. Trait characteristics of diffusion model parameters. J Intell. 2016;4(3):Article 7.

Ratcliff R, Thapar A, McKoon G. A diffusion model analysis of the effects of aging on recognition memory. J Mem Lang. 2004;50(4):408–24.

Schmitz F, Voss A. Decomposing task-switching costs with the diffusion model. J Exp Psychol Humand Percept Perform. 2012;38(1):222–50.

Lerche V, von Krause M, Voss A, Frischkorn GT, Schubert A-L, Hagemann D. Diffusion modeling and intelligence: drift rates show both domain-general and domain-specific relations with intelligence. J Exp Psychol Gen. 2020;149(12):2207–49.

Green CS, Bavelier D, Kramer AF, Vinogradov S, Ansorge U, Ball KK, et al. Improving methodological standards in behavioral interventions for cognitive enhancement. J Cognit Enhanc. 2019;3(1):2–29.

von Bastian CC, Oberauer K. Effects and mechanisms of working memory training: a review. Psychol Res. 2014;78(6):803–20.

von Bastian CC, Guye S, De Simoni C. How strong is the evidence for the effectiveness of working memory training? In: Bunting MF, Novick JM, Dougherty MR, Engle RW, editors. Cognitive and working memory training: perspectives from psychology, neuroscience, and human development. Newyork: Oxford University Press; 2020. p. 58–78.

Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695–9.

Kievit RA, Brandmaier AM, Ziegler G, van Harmelen A-L, de Mooji SMM, Moutoussis M, et al. Developmental cognitive neuroscience using latent change score models: a tutorial and applications. Dev Cogn Neurosci. 2018;33:99–117.

Guye S, De Simoni C, von Bastian CC. Do individual differences predict change in cognitive training performance? A latent growth curve modeling approach. J Cognit Enhanc. 2017;1(4):374–93.

Lövdén M, Brehmer Y, Li S-C, Lindenberger U. Training-induced compensation versus magnification of individual differences in memory performance. Front Hum Neurosci. 2012;6:141.

Schönbrodt FD, Perugini M. At what sample size do correlations stabilize? J Res Pers. 2013;47(5):609–12.

von Bastian CC, Souza AS, Gade M. No evidence for bilingual cognitive advantages: a test of four hypotheses. J Exp Psychol Gen. 2016;145(2):246–58.

von Bastian CC, Locher A, Ruflin M. Tatool: a Java-based open-source programming framework for psychological studies. Behav Res Methods. 2013;45(1):108–15.

von Bastian CC, Eschen A. Does working memory training have to be adaptive? Psychol Res. 2016;80:1818–2194.

von Bastian CC, Oberauer K. Distinct transfer effects of training different facets of working memory capacity. J Mem Lang. 2013;69:36–58.

Strobach T, Huestegge L. Evaluating the effectiveness of commercial brain game training with working-memory tasks. J Cognit Enhanc. 2017;1:539–58.

Snodgrass JG, Vanderwart M. A standardized set of 260 pictures: norms for name agreement, image agreement, familiarity, and visual complexity. J Exp Psychol Hum Learn Memory. 1980;6(2):174–215.

Szekely A, Jacobsen T, D’Amico S, Devescovi A, Andonova E, Herron D, et al. A new on-line resource for psycholinguistic studies. J Mem Lang. 2004;51(2):247–50.

Miyake A, Friedman NP, Emerson MJ, Witzki AH, Howerter A. The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent variable analysis. Cogn Psychol. 2000;41(1):49–100.

Oberauer K. Binding and inhibition in working memory: Individual and age differences in short-term recognition. J Exp Psychol Gen. 2005;134(3):368–87.

Fougnie D, Alvarez GA. Object features fail independently in visual working memory: evidence for a probabilistic feature-store model. J Vis. 2011;11(12):3.

Zhang W, Luck SJ. Discrete fixed-resolution representations in visual working memory. Nature. 2008;453(7192):233–5.

Bays PM, Catalao RFG, Masud H. The precision of visual working memory is set by allocation of a shared resource. J Vis. 2009;9(10):Article 7.

Chuderski A, Taraday M, Nęcka E, Smoleń T. Storage capacity explains fluid intelligence but executive control does not. Intelligence. 2012;40(3):278–95.

Salthouse TA, Meinz EJ. Aging, inhibition, working memory, and speed. J Gerontol B Psychol Sci Soc Sci. 1995;50B(6):297–306.

Simon JR. Reactions toward the source of stimulation. J Exp Psychol. 1969;81:174–6.

Raven JC. Advanced progressive matrices: sets I, II. Oxford: Oxford Psychologists Press; 1990.

Arthur W Jr, Day DV. Development of a short form for the Raven advanced progressive matrices test. Educ Psychol Measur. 1994;54(2):394–403.

Arthur W Jr, Tubre TC, Paul DS, Sanchez-Ku ML. College-sample psychometric and normative data on a short form of the Raven advanced progressive matrices test. J Psychoeduc Assess. 1999;17:354–61.

Ekstrom RB, French JW, Harman HH, Dermen D. Manual for kit of factor-referenced cognitive tests. Princeton: Educational Testing Service; 1976.

Broadbent DE, Cooper PF, FitzGerald P, Parkes KR. The Cognitive Failures Questionnaire (CFQ) and its correlates. Br J Clin Psychol. 1982;21(1):1–16.

Klumb PL. Cognitive failures and performance differences: Validation studies of a German version of the cognitive failures questionnaire. Ergonomics. 1995;38(7):1456–67.

Fluckiger J. Pensées intrusives, inhibition, impulsivité et souvenirs involontaires: Master thesis, University of Geneva; 2009.

Van der Linden M, Wyns C, Coyette F, von Frenckel R, Seron X. Un questionnaire d'auto-évaluation de la mémoire (QAM): Editest; 1989.

Clement F, Belleville S, Gauthier S. Cognitive complaint in mild cognitive impairment and Alzheimer’s disease. J Int Neuropsychol Soc. 2008;14(2):222–32.

Willis SL, Marsiske M. Manual for the Everyday Problems Test: Department of Human Development and Family Studies, Pennsylvania State University; 1993.

Boot WR, Charness N, Czaja SJ, Sharit J, Rogers WA, Fisk AD, et al. Computer proficiency questionnaire: assessing low and high computer proficient seniors. Gerontologist. 2015;55(3):404–11.

Wolinsky FD, Mahncke H, Vander Weg MW, Martin R, Unverzagt FW, Ball KK, et al. Speed of processing training protects self-rated health in older adults: enduring effects observed in the multi-site ACTIVE randomized controlled trial. Int Psychogeriatr. 2010;22(3):470–8.

Lovibond PF, Lovibond SH. The structure of negative emotional states: comparison of the Depression Anxiety Stress Scales (DASS) with the Beck Depression and Anxiety Inventories. Behav Res Ther. 1995;33(3):335–43.

Nilges P, Essau C. Die Depressions-Angst-Stress-Skalen. Schmerz. 2015;29(6):649–57.

Henry JD, Crawford JR. The short-form version of the Depression Anxiety Stress Scales (DASS-21): construct validity and normative data in a large non-clinical sample. Br J Clin Psychol. 2005;44(2):227–39.

Ramasawmy S. Validation of the "French Depression Anxiety Stress Scales" (DASS-21) and predictors of depression in an adolescent Mauritian population: Doctoral Dissertation, Aix-Marseille Université; 2015.

Galasko D, Bennett DA, Sano M, Marson D, Kaye J, Edland SD, et al. ADCS Prevention Instrument Project: assessment of instrumental activities of daily living for community-dwelling elderly individuals in dementia prevention clinical trials. Alzheimer Dis Assoc Disord. 2006;20(4 Suppl 3):S152–69.

Vemuri P, Lesnick TG, Przybelski SA, Knopman DS, Roberts RO, Lowe VJ, et al. Effect of lifestyle activities on Alzheimer disease biomarkers and cognition. Ann Neurol. 2012;72(5):730–8.

Ross LA, Freed SA, Edwards JD, Phillips CB, Ball K. The impact of three cognitive training programs on driving cessation across 10 years: a randomized controlled trial. Gerontologist. 2017;57(5):838–46.

John OP, Srivastava S. The Big Five trait taxonomy: History, measurement, and theoretical perspectives. In: Pervin LA, John OP, editors. Handbook of personality: theory and research. Guilford Press: New York; 1999. p. 102–38.

Rammstedt B, Danner D. Die Facettenstruktur des Big Five Inventory (BFI): Validierung für die deutsche Adaptation des BFI. Diagnostica. 2017;63(1):70–84.

Plaisant O, Courtois R, Réveillère C, Mendelsohn GA, John OP. Validation par analyse factorielle du Big Five Inventory Français (BFI-Fr). Analyse convergente avec le NEO-PI-R. Annales Médico-Psychologiques. 2010;168(2):97–106.

Duckworth ALQ, Quinn DP. Development and validation of the Short Grit Scale (GRIT–S). J Personal Assess. 2009;91(2):166–74.

Schmidt FTC, Fleckenstein J, Retelsdorf J, Eskreis-Winkler L, Möller J. Measuring grit. Eur J Psychol Assess. 2019;35(3):436–47.

Dweck CS. Self-theories: their role in motivation, personality, and development. Philadelphia: Psychology Press; 1999.

Bandura A. Guide for constructing self-efficacy scales. In: Pajares F, Urdan T, editors. Self-efficacy beliefs of adolescents. 5: Information Age Publishing; 2006.

Schwarzer R, Jerusalem M. Generalized self-efficacy scale. In: Weinman J, Wright S, Johnston M, editors. Measures in health psychology: a user’s portfolio Causal and control beliefs. NFER-NELSON: Berkshire; 1995. p. 35–7.

Schwarzer R, Jerusalem M. Skalen zur Erfassung von Lehrer- und Schülermerkmalen. Dokumentation der psychometrischen Verfahren im Rahmen der Wissenschaftlichen Begleitung des Modellversuchs Selbstwirksame Schulen.: Freie Universität Berlin; 1999.

Dumont M, Schwarzer R, Jerusalem M. French Adaptation of the General Self-Efficacy Scale 2000 [Available from: http://userpage.fu-berlin.de/health/french.htm.

Åkerstedt T, Hume K, Minors D, Waterhouse J. The subjective meaning of good sleep, an intraindividual approach using the Karolinska Sleep Diary. Percept Mot Skills. 1994;79(1):287–96.

Könen T, Dirk J, Schmiedek F. Cognitive benefits of last night’s sleep: daily variations in children’s sleep behavior are related to working memory fluctuations. J Child Psychol Psychiatry. 2015;56(2):171–82.

Röcke C, Li S-C, Smith J. Intraindividual variability in positive and negative affect over 45 days: Do older adults fluctuate less than young adults? Psychol Aging. 2009;24(4):863–78.

Brose A, Schmiedek F, Lövdén M, Lindenberger U. Daily variability in working memory is coupled with negative affect: the role of attention and motivation. Emotion. 2012;12(3):605–17.

Steyer R, Schwenkmezger P, Notz P, Eid M. Der Mehrdimensionale Befindlichkeitsfragebogen. Gottingen: Hogrefe; 1997.

Wilhelm P, Schoebi D. Assessing mood in daily life: Structural validity, sensitivity to change, and reliability of a short-scale to measure three basic dimensions of mood. Eur J Psychol Assess. 2007;23(4):258–67.

Lischetzke T, Cuccodoro G, Gauger A, Todeschini L, Eid M. Measuring affective clarity indirectly: individual differences in response latencies of state. Emotion. 2005;5(4):431–45.

Wagenmakers E-J, Van Der Maas HLJ, Grasman RPPP. An EZ-diffusion model for response time and accuracy. Psychon Bull Rev. 2007;14:3–22.

Wagenmakers E-J, van Der Maas HLJ, Dolan CV, Grasman RPPP. EZ does it! Extensions of the EZ-diffusion model. Psychon Bull Rev. 2008;15:1229–35.

van Ravenzwaaij D, Donkin C, Vandekerckhove J. The EZ diffusion model provides a powerful test of simple empirical effects. Psychon Bull Rev. 2017;24(2):547–56.

Wiecki TV, Sofer I, Frank MJ. HDDM: hierarchical bayesian estimation of the drift-diffusion model in python. Front Neuroinform. 2013;7:14.

Schmiedek F, Lövden M, Lindenberger U. Hundred days of cognitive training enhance broad cognitive abilities in adulthood: findings from the COGITO study. Front Aging Neurosci. 2010;2(27):1–10.

Wetzels R, Wagenmakers E-J. A default Bayesian hypothesis test for correlations and partial correlations. Psychon Bull Rev. 2012;19:1057–64.

Hu L-T, Bentler PM. Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Struct Equ Model. 1999;6(1):1–55.

Simons DJ, Boot WR, Charness N, Gathercole SE, Chabris CF, Hambrick DZ, et al. Do “brain-training” programs work? Psychol Sci Public Interest. 2016;17(3):103–86.

WHO. Global strategy and action plan on ageing and health. Geneva: World Health Organization; 2017.