Mechanisms of drug combinations: interaction and network perspectives

Nature Reviews Drug Discovery - Tập 8 Số 2 - Trang 111-128 - 2009
Jia Jia1, Feng Zhu1, Xiaohua Ma1, Zhiwei Cao2, Yixue X. Li2, Yu Chen2
1Department of Pharmacy, Department of Biological Science, Bioinformatics and Drug Design Group, Center for Computational Science and Engineering, National University of Singapore, 117543, Singapore
2Shanghai Center for Bioinformation Technology, 201203, Shanghai, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Drews, J. Drug discovery: a historical perspective. Science 287, 1960–1964 (2000).

Imming, P., Sinning, C. & Meyer, A. Drugs, their targets and the nature and number of drug targets. Nature Rev. Drug Discov. 5, 821–834 (2007).

Zheng, C. J. et al. Therapeutic targets: progress of their exploration and investigation of their characteristics. Pharmacol. Rev. 58, 259–279 (2006).

Ashburn, T. T. & Thor, K. B. Drug repositioning: identifying and developing new uses for existing drugs. Nature Rev. Drug Discov. 3, 673–683 (2004).

Ocampo, M. T. et al. Targeted deletion of mNth1 reveals a novel DNA repair enzyme activity. Mol. Cell. Biol. 22, 6111–6121 (2002).

Papp, B. Metabolic network analysis of the causes and evolution of enzyme dispensability in yeast. Nature 429, 661–664 (2004).

Smalley, K. S. et al. Multiple signaling pathways must be targeted to overcome drug resistance in cell lines derived from melanoma metastases. Mol. Cancer Ther. 5, 1136–1144 (2006). An example of the need to target multiple pathways.

Pilpel, Y., Sudarsanam, P. & Church, G. M. Identifying regulatory networks by combinatorial analysis of promoter elements. Nature Genet. 29, 153–159 (2001).

Peng, X. H. et al. Cross-talk between epidermal growth factor receptor and hypoxia-inducible factor-1alpha signal pathways increases resistance to apoptosis by up-regulating survivin gene expression. J. Biol. Chem. 281, 25903–25914 (2006).

Muller, R. Crosstalk of oncogenic and prostanoid signaling pathways. J. Cancer Res. Clin. Oncol. 130, 429–444 (2004).

Massarweh, S. & Schiff, R. Resistance to endocrine therapy in breast cancer: exploiting estrogen receptor/growth factor signaling crosstalk. Endocr. Relat. Cancer 13 (Suppl. 1), S15–S24 (2006).

Sergina, N. V. et al. Escape from HER-family tyrosine kinase inhibitor therapy by the kinase-inactive HER3. Nature 445, 437–441 (2007). An example of compensatory activities against drug targeting.

Kassouf, W. et al. Uncoupling between epidermal growth factor receptor and downstream signals defines resistance to the antiproliferative effect of Gefitinib in bladder cancer cells. Cancer Res. 65, 10524–10535 (2005).

Christopher M., Overall & Kleifeld, O. Validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nature Rev. Cancer 6, 227–239 (2006). An overview of a class of targets exhibiting antitarget activities.

Keith, C. T., Borisy, A. A. & Stockwell, B. R. Multicomponent therapeutics for networked systems. Nature Rev. Drug Discov. 4, 71–78 (2005). An overview of the issues in discovering drug combinations.

Csermely, P., Agoston, V. & Pongor, S. The efficiency of multi-target drugs: the network approach might help drug design. Trends Pharmacol. Sci. 26, 178–182 (2005). An overview of the issues in discovering multi-target drugs.

Kitano, H. A robustness-based approach to systems-oriented drug design. Nature Rev. Drug Discov. 6, 202–210 (2007).

Kamb, A., Wee, S. & Lengauer, C. Why is cancer drug discovery so difficult? Nature Rev. Drug Discov. 6, 115–120 (2007). An overview of multiple factors affecting anticancer therapeutics.

Nelson, H. S. Advair: combination treatment with fluticasone propionate/salmeterol in the treatment of asthma. J. Allergy Clin. Immunol. 107, 398–416 (2001).

Gupta, E. K. & Ito, M. K. Lovastatin and extended-release niacin combination product: the first drug combination for the management of hyperlipidemia. Heart Dis. 4, 124–137 (2002).

Larder, B. A., Kemp, S. D. & Harrigan, P. R. Potential mechanism for sustained antiretroviral efficacy of AZT-3TC combination therapy. Science 269, 696–699 (1995). An earlier investigation of a possible mechanism of enhancing the efficacy of a drug combination.

Zimmermann, G. R., Lehar, J. & Keith, C. T. Multi-target therapeutics: when the whole is greater than the sum of the parts. Drug Discov. Today 12, 34–42 (2007).

Dancey, J. E. & Chen, H. X. Strategies for optimizing combinations of molecularly targeted anticancer agents. Nature Rev. Drug Discov. 5, 649–659 (2006). An overview of strategies for optimizing anticancer drug combinations.

Silver, L. L. Multi-targeting by monotherapeutic antibacterials. Nature Rev. Drug Discov. 6, 41–55 (2007).

Graham, B. A., Hammond, D. L. & Proudfit, H. K. Synergistic interactions between two α2-adrenoceptor agonists, dexmedetomidine and ST-91, in two substrains of Sprague-Dawley rats. Pain 85, 135–143 (2000).

Kisliuk, R. L. Synergistic interactions among antifolates. Pharmacol. Ther. 85, 183–190 (2000).

Rand, K. H. & Houck, H. Daptomycin synergy with rifampicin and ampicillin against vancomycin-resistant enterococci. J. Antimicrob. Chemother. 53, 530–532 (2004).

Dryselius, R., Nekhotiaeva, N. & Good, L. Antimicrobial synergy between mRNA- and protein-level inhibitors. J. Antimicrob. Chemother. 56, 97–103 (2005).

Azrak, R. G. et al. The mechanism of methylselenocysteine and docetaxel synergistic activity in prostate cancer cells. Mol. Cancer Ther. 5, 2540–2548 (2006).

Bell, A. Antimalarial drug synergism and antagonism: mechanistic and clinical significance. FEMS Microbiol. Lett. 253, 171–184 (2005).

Robertson, J. G. Mechanistic basis of enzyme-targeted drugs. Biochemistry 44, 5561–5571 (2005).

Zybarth, G. & Kley, N. Investigating the molecular basis of drug action and response: chemocentric genomics and proteomics. Curr. Drug Targets 7, 387–395 (2006).

Wishart, D. S. et al. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 34, D668–D672 (2006).

Yao, L. X., Wu, Z. C., Ji, Z. L., Chen, Y. Z. & Chen, X. Internet resources related to drug action and human response: a review. Appl. Bioinformatics 5, 131–139 (2006).

Liu, T., Lin, Y., Wen, X., Jorissen, R. N. & Gilson, M. K. BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res. 35, D198–D201 (2007).

Ji, Z. L. et al. Internet resources for proteins associated with drug therapeutic effects, adverse reactions and ADME. Drug Discov. Today 8, 526–529 (2003).

Chen, Y. Z. & Zhi, D. G. Ligand-protein inverse docking and its potential use in the computer search of protein targets of a small molecule. Proteins 43, 217–226 (2001). A demonstration that molecular modelling methods can be explored for in silico search for multiple targets of individual small-molecule drugs.

Paul, N., Kellenberger, E., Bret, G., Muller, P. & Rognan, D. Recovering the true targets of specific ligands by virtual screening of the protein data bank. Proteins 54, 671–680 (2004).

Cleves, A. E. & Jain, A. N. Robust ligand-based modeling of the biological targets of known drugs. J. Med. Chem. 49, 2921–2938 (2006).

Armour, C. D. & Lum, P. Y. From drug to protein: using yeast genetics for high-throughput target discovery. Curr. Opin. Chem. Biol. 9, 20–24 (2005).

Nettles, J. H. et al. Bridging chemical and biological space: “target fishing” using 2D and 3D molecular descriptors. J. Med. Chem. 49, 6802–6810 (2006).

Han, L. Y. et al. Support vector machines approach for predicting druggable proteins: recent progress in its exploration and investigation of its usefulness. Drug Discov. Today 12, 304–313 (2007).

Chen, X., Fang, Y., Yao, L., Chen, Y. & Xu, H. Does drug-target have a likeness? Methods Inf. Med. 46, 360–366 (2007).

Kumar, N., Afeyan, R., Kim, H. D. & Lauffenburger, D. A. Multi-pathway model enables prediction of kinase inhibitor cross-talk effects on migration of Her2-overexpressing mammary epithelial cells. Mol. Pharmacol. 73, 1668–1678 (2008). A demonstration that collective measurement of target, off-target and crosstalk sites can better predict therapeutic efficacies.

Xiong, H. & Choe, Y. Dynamical pathway analysis. BMC Syst. Biol. 2, 9 (2008).

Sivachenko, A., Kalinin, A. & Yuryev, A. Pathway analysis for design of promiscuous drugs and selective drug mixtures. Curr. Drug Discov. Technol. 3, 269–277 (2006).

Kim, H. S. & Fay, J. C. Genetic variation in the cysteine biosynthesis pathway causes sensitivity to pharmacological compounds. Proc. Natl Acad. Sci. USA 104, 19387–19391 (2007).

Carvalho-Netto, E. F., Markham, C., Blanchard, D. C., Nunes- de-Souza, R. L. & Blanchard, R. J. Physical environment modulates the behavioral responses induced by chemical stimulation of dorsal periaqueductal gray in mice. Pharmacol. Biochem. Behav. 85, 140–147 (2006).

Yang, H. et al. Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell 130, 1095–1107 (2007).

Tabernero, J. et al. Dose- and schedule-dependent inhibition of the mammalian target of rapamycin pathway with everolimus: a Phase I tumor pharmacodynamic study in patients with advanced solid tumors. J. Clin. Oncol. 26, 1603–1610 (2008).

Chou, T. C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev. 58, 621–681 (2006). An overview of the methods for analysing and studying the effects of drug combinations.

Greco, W. R., Bravo, G. & Parsons, J. C. The search for synergy: a critical review from a response surface perspective. Pharmacol. Rev. 47, 331–385 (1995).

Dolara, P., Salvadori, M., Capobianco, T. & Torricelli, F. Sister-chromatid exchanges in human lymphocytes induced by dimethoate, omethoate, deltamethrin, benomyl and their mixture. Mutat. Res. 283, 113–118 (1992).

Johnson, M. D., MacDougall, C., Ostrosky-Zeichner, L., Perfect, J. R. & Rex, J. H. Combination antifungal therapy. Antimicrob. Agents Chemother. 48, 693–715 (2004).

Peterson, J. J. & Novick, S. J. Nonlinear blending: a useful general concept for the assessment of combination drug synergy. J. Recept. Signal. Transduct. Res. 27, 125–146 (2007).

Tallarida, R. J. Interactions between drugs and occupied receptors. Pharmacol. Ther. 113, 197–209 (2007).

Jonker, D. M., Visser, S. A., van der Graaf, P. H., Voskuyl, R. A. & Danhof, M. Towards a mechanism-based analysis of pharmacodynamic drug–drug interactions in vivo. Pharmacol. Ther. 106, 1–18 (2005).

Peters, G. J. et al. Basis for effective combination cancer chemotherapy with antimetabolites. Pharmacol. Ther. 87, 227–253 (2000).

Barrera, N. P., Morales, B., Torres, S. & Villalon, M. Principles: mechanisms and modeling of synergism in cellular responses. Trends Pharmacol. Sci. 26, 526–532 (2005).

Wheeler, D. L. et al. Database resources of the National Center for Biotechnology Information: update. Nucleic Acids Res. 32, D35–D40 (2004).

Kawakami, H. et al. Inhibition of heat shock protein-90 modulates multiple functions required for survival of human T-cell leukemia virus type I-infected T-cell lines and adult T-cell leukemia cells. Int. J. Cancer 120, 1811–1820 (2007).

Lin, X., Kim, H. K. & Howell, S. B. The role of DNA mismatch repair in cisplatin mutagenicity. J. Inorg. Biochem. 77, 89–93 (1999).

Rhee, I. et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature 416, 552–556 (2002).

van Waardenburg, R. C. et al. Platinated DNA adducts enhance poisoning of DNA topoisomerase I by camptothecin. J. Biol. Chem. 279, 54502–54509 (2004).

Grimaldi, K. A., McAdam, S. R., Souhami, R. L. & Hartley, J. A. DNA damage by anti-cancer agents resolved at the nucleotide level of a single copy gene: evidence for a novel binding site for cisplatin in cells. Nucleic Acids Res. 22, 2311–2317 (1994).

Bassett, E. et al. Efficiency of extension of mismatched primer termini across from cisplatin and oxaliplatin adducts by human DNA polymerases beta and eta in vitro. Biochemistry 42, 14197–14206 (2003).

Koster, D. A., Palle, K., Bot., E. S., Bjornsti, M. A. & Dekker, N. H. Antitumour drugs impede DNA uncoiling by topoisomerase I. Nature 448, 213–217 (2007).

D'Incalci, M. et al. The combination of yondelis and cisplatin is synergistic against human tumor xenografts. Eur. J. Cancer 39, 1920–1926 (2003).

Marco, E. & Gago, F. DNA structural similarity in the 2:1 complexes of the antitumor drugs trabectedin (Yondelis) and chromomycin A3 with an oligonucleotide sequence containing two adjacent TGG binding sites on opposing strands. Mol. Pharmacol. 68, 1559–1567 (2005).

Dziegielewska, B., Kowalski, D. & Beerman, T. A. SV40 DNA replication inhibition by the monofunctional DNA alkylator Et743. Biochemistry 43, 14228–14237 (2004).

Dai, Z., Liu, S., Marcucci, G. & Sadee, W. 5-Aza-2′-deoxycytidine and depsipeptide synergistically induce expression of BIK (BCL2-interacting killer). Biochem. Biophys. Res. Commun. 351, 455–461 (2006).

Georgakis, G. V., Li, Y., Rassidakis, G. Z., Medeiros, L. J. & Younes, A. The HSP90 inhibitor 17-AAG synergizes with doxorubicin and U0126 in anaplastic large cell lymphoma irrespective of ALK expression. Exp. Hematol. 34, 1670–1679 (2006).

Soja, P. J., Pang, W., Taepavarapruk, N. & McErlane, S. A. Spontaneous spike activity of spinoreticular tract neurons during sleep and wakefulness. Sleep 24, 18–25 (2001).

Staud, R. Evidence of involvement of central neural mechanisms in generating fibromyalgia pain. Curr. Rheumatol. Rep. 4, 299–305 (2002).

Tham, S. M., Angus, J. A., Tudor, E. M. & Wright, C. E. Synergistic and additive interactions of the cannabinoid agonist CP55, 940 with μ opioid receptor and α2-adrenoceptor agonists in acute pain models in mice. Br. J. Pharmacol. 144, 875–884 (2005).

Malonga, H., Neault, J. F., Diamantoglou, S. & Tajmir-Riahi, H. A. Taxol anticancer activity and DNA binding. Mini Rev. Med. Chem. 5, 307–311 (2005).

Sintchak, M. D. et al. Structure and mechanism of inosine monophosphate dehydrogenase in complex with the immunosuppressant mycophenolic acid. Cell 85, 921–930 (1996).

Marcus, A. I. et al. The synergistic combination of the farnesyl transferase inhibitor lonafarnib and paclitaxel enhances tubulin acetylation and requires a functional tubulin deacetylase. Cancer Res. 65, 3883–3893 (2005).

Piperno, G., LeDizet, M. & Chang, X. J. Microtubules containing acetylated α-tubulin in mammalian cells in culture. J. Cell Biol. 104, 289–302 (1987).

Lai, G. H., Zhang, Z. & Sirica, A. E. Celecoxib acts in a cyclooxygenase-2-independent manner and in synergy with emodin to suppress rat cholangiocarcinoma growth in vitro through a mechanism involving enhanced Akt inactivation and increased activation of caspases-9 and -3. Mol. Cancer Ther. 2, 265–271 (2003).

Alloza, I., Baxter, A., Chen, Q., Matthiesen, R. & Vandenbroeck, K. Celecoxib inhibits interleukin-12 αβ and β2 folding and secretion by a novel COX2-independent mechanism involving chaperones of the endoplasmic reticulum. Mol. Pharmacol. 69, 1579–1587 (2006).

Jayasuriya, H., Koonchanok, N. M., Geahlen, R. L., McLaughlin, J. L. & Chang, C. J. Emodin, a protein tyrosine kinase inhibitor from Polygonum cuspidatum. J. Nat. Prod. 55, 696–698 (1992).

Olsen, B. B., Bjorling-Poulsen, M. & Guerra, B. Emodin negatively affects the phosphoinositide 3-kinase/AKT signalling pathway: a study on its mechanism of action. Int. J. Biochem. Cell Biol. 39, 227–237 (2007).

Cottagnoud, P., Cottagnoud, M. & Tauber, M. G. Vancomycin acts synergistically with gentamicin against penicillin-resistant pneumococci by increasing the intracellular penetration of gentamicin. Antimicrob. Agents Chemother. 47, 144–147 (2003).

Yoshizawa, S., Fourmy, D. & Puglisi, J. D. Structural origins of gentamicin antibiotic action. EMBO J. 17, 6437–6448 (1998).

Cegelski, L. et al. Rotational-echo double resonance characterization of the effects of vancomycin on cell wall synthesis in Staphylococcus aureus. Biochemistry 41, 13053–13058 (2002).

Watanakunakorn, C. Mode of action and in-vitro activity of vancomycin. J. Antimicrob. Chemother. 14 (Suppl. D), 7–18 (1984).

Goddard, J. et al. Endothelin A receptor antagonism and angiotensin-converting enzyme inhibition are synergistic via an endothelin B receptor-mediated and nitric oxide-dependent mechanism. J. Am. Soc. Nephrol. 15, 2601–2610 (2004).

Verhaar, M. C. et al. Endothelin-A receptor antagonist-mediated vasodilatation is attenuated by inhibition of nitric oxide synthesis and by endothelin-B receptor blockade. Circulation 97, 752–756 (1998).

Moridaira, K. et al. ACE inhibition increases expression of the ETB receptor in kidneys of mice with unilateral obstruction. Am. J. Physiol. Renal Physiol. 284, F209–F217 (2003).

Pollock, D. M., Keith, T. L. & Highsmith, R. F. Endothelin receptors and calcium signaling. Faseb J. 9, 1196–1204 (1995).

Touma, S. E. et al. Retinoic acid and the histone deacetylase inhibitor trichostatin a inhibit the proliferation of human renal cell carcinoma in a xenograft tumor model. Clin. Cancer Res. 11, 3558–3566 (2005).

Meco, D. et al. Effective combination of ET-743 and doxorubicin in sarcoma: preclinical studies. Cancer Chemother. Pharmacol. 52, 131–138 (2003).

Kellogg, G. E., Scarsdale, J. N. & Fornari, F. A. Jr. Identification and hydropathic characterization of structural features affecting sequence specificity for doxorubicin intercalation into DNA double-stranded polynucleotides. Nucleic Acids Res. 26, 4721–4732 (1998).

Zewail-Foote, M. et al. The inefficiency of incisions of ecteinascidin 743-DNA adducts by the UvrABC nuclease and the unique structural feature of the DNA adducts can be used to explain the repair-dependent toxicities of this antitumor agent. Chem. Biol. 8, 1033–1049 (2001).

Baruah, H., Barry, C. G. & Bierbach, U. Platinum-intercalator conjugates: from DNA-targeted cisplatin derivatives to adenine binding complexes as potential modulators of gene regulation. Curr. Top. Med. Chem. 4, 1537–1549 (2004).

Nickels, T. J. et al. Effect of theophylline and aminophylline on transmitter release at the mammalian neuromuscular junction is not mediated by cAMP. Clin. Exp. Pharmacol. Physiol. 33, 465–470 (2006).

Barrington, W. W., Jacobson, K. A. & Stiles, G. L. Demonstration of distinct agonist and antagonist conformations of the A1 adenosine receptor. J. Biol. Chem. 264, 13157–13164 (1989).

Pelicano, H. et al. Targeting Hsp90 by 17-AAG in leukemia cells: mechanisms for synergistic and antagonistic drug combinations with arsenic trioxide and Ara-C. Leukemia 20, 610–619 (2006).

Yao, Q., Weigel, B. & Kersey, J. Synergism between etoposide and 17-AAG in leukemia cells: critical roles for Hsp90, FLT3, topoisomerase II, Chk1, and Rad51. Clin. Cancer Res. 13, 1591–1600 (2007).

Thanou, M., Verhoef, J. C. & Junginger, H. E. Oral drug absorption enhancement by chitosan and its derivatives. Adv. Drug Deliv. Rev. 52, 117–126 (2001).

Ciccolini, J. et al. Enhanced antitumor activity of 5-fluorouracil in combination with 2′-deoxyinosine in human colorectal cell lines and human colon tumor xenografts. Clin. Cancer Res. 6, 1529–1535 (2000).

Matsuura, M., Nakazawa, H., Hashimoto, T. & Mitsuhashi, S. Combined antibacterial activity of amoxicillin with clavulanic acid against ampicillin-resistant strains. Antimicrob. Agents Chemother. 17, 908–911 (1980).

Nasher, M. A. & Hay, R. J. Synergy of antibiotics against Streptomyces somaliensis isolates in vitro. J. Antimicrob. Chemother. 41, 281–284 (1998).

Cohen, S. G. & Criep, L. H. Observations on the symptomatic treatment of chronic vascular headache with cafergone (ergotamine tartrate and caffeine). N. Engl. J. Med. 241, 896–900 (1949).

Stein, E. A. et al. Efficacy and tolerability of low-dose simvastatin and niacin, alone and in combination, in patients with combined hyperlipidemia: a prospective trial. J. Cardiovasc. Pharmacol. Ther. 1, 107–116 (1996).

Loehrer, P. J. Sr., Einhorn, L. H. & Greco, F. A. Cisplatin plus etoposide in small cell lung cancer. Semin. Oncol. 15, 2–8 (1988).

Normanno, N. et al. The MEK/MAPK pathway is involved in the resistance of breast cancer cells to the EGFR tyrosine kinase inhibitor gefitinib. J. Cell. Physiol. 207, 420–427 (2006).

Fletcher, D., Benoist, J. M., Gautron, M. & Guilbaud, G. Isobolographic analysis of interactions between intravenous morphine, propacetamol, and diclofenac in carrageenin-injected rats. Anesthesiology 87, 317–326 (1997).

Pace, E. et al. Synergistic effects of fluticasone propionate and salmeterol on in vitro T-cell activation and apoptosis in asthma. J. Allergy Clin. Immunol. 114, 1216–1223 (2004).

Greenwood, D. & O'Grady, F. Activity and interaction of trimethoprim and sulphamethoxazole against Escherichia coli. J. Clin. Pathol. 29, 162–166 (1976).

Barnes, P. J. Scientific rationale for inhaled combination therapy with long-acting β2-agonists and corticosteroids. Eur. Respir. J. 19, 182–191 (2002).

Fernandes, D. J. & Bertino, J. R. 5-fluorouracil-methotrexate synergy: enhancement of 5-fluorodeoxyridylate binding to thymidylate synthase by dihydropteroylpolyglutamates. Proc. Natl Acad. Sci. USA 77, 5663–5667 (1980).

Dinos, G. P., Connell, S. R., Nierhaus, K. H. & Kalpaxis, D. L. Erythromycin, roxithromycin, and clarithromycin: use of slow-binding kinetics to compare their in vitro interaction with a bacterial ribosomal complex active in peptide bond formation. Mol. Pharmacol. 63, 617–623 (2003).

Schwieler, L., Erhardt, S., Erhardt, C. & Engberg, G. Prostaglandin-mediated control of rat brain kynurenic acid synthesis — opposite actions by COX-1 and COX-2 isoforms. J. Neural Transm. 112, 863–872 (2005).

Ouellet, M. & Percival, M. D. Mechanism of acetaminophen inhibition of cyclooxygenase isoforms. Arch. Biochem. Biophys. 387, 273–280 (2001).

Brogden, R. N. et al. Amoxycillin/clavulanic acid: a review of its antibacterial activity, pharmacokinetics and therapeutic use. Drugs 22, 337–362 (1981).

Voeller, D. et al. Interaction of Pneumocystis carinii dihydropteroate synthase with sulfonamides and diaminodiphenyl sulfone (dapsone). J. Infect. Dis. 169, 456–459 (1994).

Brumfitt, W. & Hamilton-Miller, J. M. Reassessment of the rationale for the combinations of sulphonamides with diaminopyrimidines. J. Chemother. 5, 465–469 (1993).

Siddik, Z. H. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22, 7265–7279 (2003).

Maccubbin, A. E., Caballes, L., Riordan, J. M., Huang, D. H. & Gurtoo, H. L. A cyclophosphamide/DNA phosphoester adduct formed in vitro and in vivo. Cancer Res. 51, 886–892 (1991).

Anderson, J. R., Drehsen, G. & Pitman, I. H. Effect of caffeine on ergotamine absorption from rat small intestine. J. Pharm. Sci. 70, 651–657 (1981).

Plosker, G. L. & McTavish, D. Simvastatin. A reappraisal of its pharmacology and therapeutic efficacy in hypercholesterolaemia. Drugs 50, 334–363 (1995).

Ganter, B. & Giroux, C. N. Emerging applications of network and pathway analysis in drug discovery and development. Curr. Opin. Drug Discov. Devel. 11, 86–94 (2008).

Eckstein, N. et al. Epidermal growth factor receptor pathway analysis identifies amphiregulin as a key factor for cisplatin resistance of human breast cancer cells. J. Biol. Chem. 283, 739–750 (2008).

Ganter, B., Zidek, N., Hewitt, P. R., Muller, D. & Vladimirova, A. Pathway analysis tools and toxicogenomics reference databases for risk assessment. Pharmacogenomics 9, 35–54 (2008).

Apic, G., Ignjatovic, T., Boyer, S. & Russell, R. B. Illuminating drug discovery with biological pathways. FEBS Lett. 579, 1872–1877 (2005).

Davidov, E., Holland, J., Marple, E. & Naylor, S. Advancing drug discovery through systems biology. Drug Discov. Today 8, 175–183 (2003).

Huang, S. Rational drug discovery: what can we learn from regulatory networks? Drug Discov. Today 7, S163–S169 (2002).

Nahta, R. & Esteva, F. J. Trastuzumab: triumphs and tribulations. Oncogene 26, 3637–3643 (2007).

Pietras, R. J., Pegram, M. D., Finn, R. S., Maneval, D. A. & Slamon, D. J. Remission of human breast cancer xenografts on therapy with humanized monoclonal antibody to HER-2 receptor and DNA-reactive drugs. Oncogene 17, 2235–2249 (1998).

Le, X. F. et al. Genes affecting the cell cycle, growth, maintenance, and drug sensitivity are preferentially regulated by anti-HER2 antibody through phosphatidylinositol 3-kinase–AKT signaling. J. Biol. Chem. 280, 2092–2104 (2005).

Lee, S. et al. Enhanced sensitization to taxol-induced apoptosis by herceptin pretreatment in ErbB2-overexpressing breast cancer cells. Cancer Res. 62, 5703–5710 (2002).

Haller, D. G. Trimetrexate: experience with solid tumors. Semin. Oncol. 24, (Suppl. 18), S18–S76 (1997).

Humeniuk, R. et al. Aplidin synergizes with cytosine arabinoside: functional relevance of mitochondria in Aplidin-induced cytotoxicity. Leukemia 21, 2399–2405 (2007).

Bild, A. H. et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439, 353–357 (2006). A demonstration that pathway gene expression signatures can be identified for analysing multiple pathway deregulation by diseases and their regulation by drugs.

Cheok, M. H. & Evans, W. E. Acute lymphoblastic leukaemia: a model for the pharmacogenomics of cancer therapy. Nature Rev. Cancer 6, 117–129 (2006).

Lee, J. K. et al. A strategy for predicting the chemosensitivity of human cancers and its application to drug discovery. Proc. Natl Acad. Sci. USA 104, 13086–13091 (2007).

Gerhold, D. L., Jensen, R. V. & Gullans, S. R. Better therapeutics through microarrays. Nature Genet. 32, 547–551 (2002).

Rickardson, L. et al. Identification of molecular mechanisms for cellular drug resistance by combining drug activity and gene expression profiles. Br. J. Cancer 93, 483–492 (2005).

den Boer, M. L. & Pieters, R. Microarray-based identification of new targets for specific therapies in pediatric leukemia. Curr. Drug Targets. 8, 761–764 (2007).

Wirth, G. J., Schandelmaier, K., Smith, V., Burger, A. M. & Fiebig, H. H. Microarrays of 41 human tumor cell lines for the characterization of new molecular targets: expression patterns of cathepsin B and the transferrin receptor. Oncology 71, 86–94 (2006).

Andre, F., Mazouni, C., Hortobagyi, G. N. & Pusztai, L. DNA arrays as predictors of efficacy of adjuvant/neoadjuvant chemotherapy in breast cancer patients: current data and issues on study design. Biochim. Biophys. Acta 1766, 197–204 (2006).

Chaney, S. G. et al. Protein interactions with platinum-DNA adducts: from structure to function. J. Inorg. Biochem. 98, 1551–1559 (2004).

Faivre, S., Chan, D., Salinas, R., Woynarowska, B. & Woynarowski, J. M. DNA strand breaks and apoptosis induced by oxaliplatin in cancer cells. Biochem. Pharmacol. 66, 225–237 (2003).

Koizumi, F. et al. Synergistic interaction between the EGFR tyrosine kinase inhibitor gefitinib (“Iressa”) and the DNA topoisomerase I inhibitor CPT-11 (irinotecan) in human colorectal cancer cells. Int. J. Cancer 108, 464–472 (2004).

Tanaka, R. et al. Synergistic interaction between oxaliplatin and SN-38 in human gastric cancer cell lines in vitro. Oncol. Rep. 14, 683–688 (2005).

Kobayashi, S. et al. Singly-linked catenation and knotting of cisplatin-DNA adduct by DNA topoisomerase I. Nucleic Acids Symp. Ser. 29, 137–138 (1993).

Zhao, W. H., Hu, Z. Q., Okubo, S., Hara, Y. & Shimamura, T. Mechanism of synergy between epigallocatechin gallate and β-lactams against methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 45, 1737–1742 (2001).

Bickle, M., Delley, P. A., Schmidt, A. & Hall, M. N. Cell wall integrity modulates RHO1 activity via the exchange factor ROM2. Embo J. 17, 2235–2245 (1998).

Abal, M., Andreu, J. M. & Barasoain, I. Taxanes: microtubule and centrosome targets, and cell cycle dependent mechanisms of action. Curr. Cancer Drug Targets. 3, 193–203 (2003).

Ganansia-Leymarie, V., Bischoff, P., Bergerat, J. P. & Holl, V. Signal transduction pathways of taxanes-induced apoptosis. Curr. Med. Chem. Anticancer Agents 3, 291–306 (2003).

Park, S. J. et al. Taxol induces caspase-10-dependent apoptosis. J. Biol. Chem. 279, 51057–51067 (2004).

Okano, J., Nagahara, T., Matsumoto, K. & Murawaki, Y. The growth inhibition of liver cancer cells by paclitaxel and the involvement of extracellular signal-regulated kinase and apoptosis. Oncol. Rep. 17, 1195–1200 (2007).

Zhang, W., Lee, J. C., Kumar, S. & Gowen, M. ERK pathway mediates the activation of Cdk2 in IGF-1-induced proliferation of human osteosarcoma MG-63 cells. J. Bone Miner. Res. 14, 528–535 (1999).

Bacus, S. S. et al. Taxol-induced apoptosis depends on MAP kinase pathways (ERK and p38) and is independent of p53. Oncogene 20, 147–155 (2001).

Pennati, M. et al. Potentiation of paclitaxel-induced apoptosis by the novel cyclin-dependent kinase inhibitor NU6140: a possible role for survivin down-regulation. Mol. Cancer Ther. 4, 1328–1337 (2005).

Lee, E. J., Whang, J. H., Jeon, N. K. & Kim, J. The epidermal growth factor receptor tyrosine kinase inhibitor ZD1839 (Iressa) suppresses proliferation and invasion of human oral squamous carcinoma cells via p53 independent and MMP, uPAR dependent mechanism. Ann. NY Acad. Sci. 1095, 113–128 (2007).

Fanucchi, M. & Khuri, F. R. Taxanes in the treatment of non-small cell lung cancer. Treat. Respir. Med. 5, 181–191 (2006).

Takabatake, D. et al. Tumor inhibitory effect of gefitinib (ZD1839, Iressa) and taxane combination therapy in EGFR-overexpressing breast cancer cell lines (MCF7/ADR, MDA-MB-231). Int. J. Cancer 120, 181–188 (2007).

Funakoshi, M., Tago, K., Sonoda, Y., Tominaga, S. & Kasahara, T. A MEK inhibitor, PD98059 enhances IL-1-induced NF-κB activation by the enhanced and sustained degradation of IkappaBalpha. Biochem. Biophys. Res. Commun. 283, 248–254 (2001).

Roberts, P. J. & Der, C. J. Targeting the Raf–MEK–ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26, 3291–3310 (2007).

De Clercq, E. HIV-1-specific RT inhibitors: highly selective inhibitors of human immunodeficiency virus type 1 that are specifically targeted at the viral reverse transcriptase. Med. Res. Rev. 13, 229–258 (1993).

Fattorusso, C. et al. Specific targeting highly conserved residues in the HIV-1 reverse transcriptase primer grip region. Design, synthesis, and biological evaluation of novel, potent, and broad spectrum NNRTIs with antiviral activity. J. Med. Chem. 48, 7153–7165 (2005).

Cruchaga, C., Odriozola, L., Andreola, M., Tarrago-Litvak, L. & Martinez-Irujo, J. J. Inhibition of phosphorolysis catalyzed by HIV-1 reverse transcriptase is responsible for the synergy found in combinations of 3′-azido-3′-deoxythymidine with nonnucleoside inhibitors. Biochemistry 44, 3535–3546 (2005).

Rigourd, M., Ehresmann, C., Parniak, M. A., Ehresmann, B. & Marquet, R. Primer unblocking and rescue of DNA synthesis by azidothymidine (AZT)-resistant HIV-1 reverse transcriptase: comparison between initiation and elongation of reverse transcription and between (−) and (+) strand DNA synthesis. J. Biol. Chem. 277, 18611–18618 (2002).

Gajate, C. & Mollinedo, F. Cytoskeleton-mediated death receptor and ligand concentration in lipid rafts forms apoptosis-promoting clusters in cancer chemotherapy. J. Biol. Chem. 280, 11641–11647 (2005).

Cuadrado, A., Gonzalez, L., Suarez, Y., Martinez, T. & Munoz, A. JNK activation is critical for Aplidin-induced apoptosis. Oncogene 23, 4673–4680 (2004).

Biscardi, M. et al. VEGF inhibition and cytotoxic effect of aplidin in leukemia cell lines and cells from acute myeloid leukemia. Ann. Oncol. 16, 1667–1674 (2005).

Abdel-Aziz, W., Jiang, H. Y., Hickey, R. J. & Malkas, L. H. Ara-C affects formation of cancer cell DNA synthesome replication intermediates. Cancer Chemother. Pharmacol. 45, 312–319 (2000).

de Vries, J. F., Falkenburg, J. H., Willemze, R. & Barge, R. M. The mechanisms of Ara-C-induced apoptosis of resting B-chronic lymphocytic leukemia cells. Haematologica 91, 912–919 (2006).

Hajra, K. M. & Liu, J. R. Apoptosome dysfunction in human cancer. Apoptosis 9, 691–704 (2004).

Haggarty, S. J., Koeller, K. M., Wong, J. C., Grozinger, C. M. & Schreiber, S. L. Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc. Natl Acad. Sci. USA 100, 4389–4394 (2003).

Di Francesco, A. M. et al. The novel atypical retinoid ST1926 is active in ATRA resistant neuroblastoma cells acting by a different mechanism. Biochem. Pharmacol. 73, 643–655 (2007).

Zanchi, C., Zuco, V., Lanzi, C., Supino, R. & Zunino, F. Modulation of survival signaling pathways and persistence of the genotoxic stress as a basis for the synergistic interaction between the atypical retinoid ST1926 and the epidermal growth factor receptor inhibitor ZD1839. Cancer Res. 65, 2364–2372 (2005).

Zwang, Y. & Yarden, Y. p38 MAP kinase mediates stress-induced internalization of EGFR: implications for cancer chemotherapy. EMBO J. 25, 4195–4206 (2006).

Reffelmann, T. & Kloner, R. A. Cardiovascular effects of phosphodiesterase 5 inhibitors. Curr. Pharm. Des. 12, 3485–3494 (2006).

Walch, L. et al. Prostanoid receptors involved in the relaxation of human pulmonary vessels. Br. J. Pharmacol. 126, 859–866 (1999).

Parkinson, P. A., Parfenova, H. & Leffler, C. W. Phospholipase C activation by prostacyclin receptor agonist in cerebral microvascular smooth muscle cells. Proc. Soc. Exp. Biol. Med. 223, 53–58 (2000).

Ashrafpour, H. et al. Vasodilator effect and mechanism of action of vascular endothelial growth factor in skin vasculature. Am. J. Physiol. Heart Circ. Physiol. 286, H946–H954 (2004).

Della Bella, S. et al. Novel mode of action of iloprost: in vitro down-regulation of endothelial cell adhesion molecules. Prostaglandins 65, 73–83 (2001).

Ghofrani, H. A. et al. Combination therapy with oral sildenafil and inhaled iloprost for severe pulmonary hypertension. Ann. Intern. Med. 136, 515–522 (2002).

Mullershausen, F., Lange, A., Mergia, E., Friebe, A. & Koesling, D. Desensitization of NO/cGMP signaling in smooth muscle: blood vessels versus airways. Mol. Pharmacol. 69, 1969–1974 (2006).

Yamaki, F. et al. MaxiK channel-mediated relaxation of guinea-pig aorta following stimulation of IP receptor with beraprost via cyclic AMP-dependent and -independent mechanisms. Naunyn Schmiedebergs Arch. Pharmacol. 364, 538–550 (2001).

Nelson, L. E. et al. The α2-adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects. Anesthesiology 98, 428–436 (2003).

Davis, M. et al. Spinal vs. supraspinal sites of action of the α2-adrenergic agonists clonidine and ST-91 on the acoustic startle reflex. Pharmacol. Biochem. Behav. 33, 233–240 (1989).

Philipp, M., Brede, M. & Hein, L. Physiological significance of α2-adrenergic receptor subtype diversity: one receptor is not enough. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283, R287–R295 (2002).

Gan, L. et al. The immunosuppressive agent mizoribine monophosphate forms a transition state analogue complex with inosine monophosphate dehydrogenase. Biochemistry 42, 857–863 (2003).

Shimmura, H., Tanabe, K., Habiro, K., Abe, R. & Toma, H. Combination effect of mycophenolate mofetil with mizoribine on cell proliferation assays and in a mouse heart transplantation model. Transplantation 82, 175–179 (2006).

Jordan, M. A. Mechanism of action of antitumor drugs that interact with microtubules and tubulin. Curr. Med. Chem. Anticancer Agents 2, 1–17 (2002).

Madiraju, C. et al. Tubulin assembly, taxoid site binding, and cellular effects of the microtubule-stabilizing agent dictyostatin. Biochemistry 44, 15053–15063 (2005).

Honore, S. et al. Synergistic suppression of microtubule dynamics by discodermolide and paclitaxel in non-small cell lung carcinoma cells. Cancer Res. 64, 4957–4964 (2004).

Black, D. M. The development of combination drugs for atherosclerosis. Curr. Atheroscler. Rep. 5, 29–32 (2003).

Mondimore, F. M., Fuller, G. A. & DePaulo, J. R. Jr. Drug combinations for mania. J. Clin. Psychiatry 64 (Suppl. 5), 25–31 (2003).

Curatolo, M. & Sveticic, G. Drug combinations in pain treatment: a review of the published evidence and a method for finding the optimal combination. Best Pract. Res. Clin. Anaesthesiol. 16, 507–519 (2002).

Loewe, S. The problem of synergism and antagonism of combined drugs. Arzneimittelforschung 3, 285–290 (1953).

Guignard, B., Entenza, J. M. & Moreillon, P. Beta-lactams against methicillin-resistant Staphylococcus aureus. Curr. Opin. Pharmacol. 5, 479–489 (2005).

Braga, P. C., Ricci, D. & Dal Sasso, M. Daptomycin morphostructural damage in Bacillus cereus visualized by atomic force microscopy. J. Chemother. 14, 336–341 (2002).

Paul, T. R. et al. Localization of penicillin-binding proteins to the splitting system of Staphylococcus aureus septa by using a mercury-penicillin V derivative. J. Bacteriol. 177, 3631–3640 (1995).

Nishikawa, K. Angiotensin AT1 receptor antagonism and protection against cardiovascular end-organ damage. J. Hum. Hypertens. 12, 301–309 (1998).

Rokoss, M. J. & Teo, K. K. Ramipril in the treatment of vascular diseases. Expert Opin. Pharmacother. 6, 1911–1919 (2005).

Carlsson, L. & Abrahamsson, T. Ramiprilat attenuates the local release of noradrenaline in the ischemic myocardium. Eur. J. Pharmacol. 166, 157–164 (1989).

Raasch, W., Johren, O., Schwartz, S., Gieselberg, A. & Dominiak, P. Combined blockade of AT1-receptors and ACE synergistically potentiates antihypertensive effects in SHR. J. Hypertens. 22, 611–618 (2004).

Alves, D. P. et al. Additive antinociceptive effect of the combination of diazoxide, an activator of ATP-sensitive K+ channels, and sodium nitroprusside and dibutyryl-cGMP. Eur. J. Pharmacol. 489, 59–65 (2004).

Russ, U., Lange, U., Loffler-Walz, C., Hambrock, A. & Quast, U. Binding and effect of K ATP channel openers in the absence of Mg2+. Br. J. Pharmacol. 139, 368–380 (2003).

Soares, A. C. & Duarte, I. D. Dibutyryl-cyclic GMP induces peripheral antinociception via activation of ATP-sensitive K+ channels in the rat PGE2-induced hyperalgesic paw. Br. J. Pharmacol. 134, 127–131 (2001).

Deka, D. K. & Brading, A. F. Nitric oxide activates glibenclamide-sensitive K+ channels in urinary bladder myocytes through a c-GMP-dependent mechanism. Eur. J. Pharmacol. 492, 13–19 (2004).

Alves, D. S., Perez-Fons, L., Estepa, A. & Micol, V. Membrane-related effects underlying the biological activity of the anthraquinones emodin and barbaloin. Biochem. Pharmacol. 68, 549–561 (2004).

Campagna-Slater, V. & Weaver, D. F. Anaesthetic binding sites for etomidate and propofol on a GABAA receptor model. Neurosci. Lett. 418, 28–33 (2007).

Nishikawa, K. & Harrison, N. L. The actions of sevoflurane and desflurane on the γ-aminobutyric acid receptor type A: effects of TM2 mutations in the alpha and beta subunits. Anesthesiology 99, 678–684 (2003).

Harris, R. S., Lazar, O., Johansen, J. W. & Sebel, P. S. Interaction of propofol and sevoflurane on loss of consciousness and movement to skin incision during general anesthesia. Anesthesiology 104, 1170–1175 (2006).

Sigel, E. Mapping of the benzodiazepine recognition site on GABAA receptors. Curr. Top. Med. Chem. 2, 833–839 (2002).

Ono, S., Muratani, T. & Matsumoto, T. Mechanisms of resistance to imipenem and ampicillin in Enterococcus faecalis. Antimicrob. Agents Chemother. 49, 2954–2958 (2005).

Fuda, C., Suvorov, M., Vakulenko, S. B. & Mobashery, S. The basis for resistance to β-lactam antibiotics by penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus. J. Biol. Chem. 279, 40802–40806 (2004).

Krishna, S., Woodrow, C. J., Staines, H. M., Haynes, R. K. & Mercereau-Puijalon, O. Re-evaluation of how artemisinins work in light of emerging evidence of in vitro resistance. Trends Mol. Med. 12, 200–205 (2006).

Cui, L., Miao, J. & Cui, L. Cytotoxic effect of curcumin on malaria parasite Plasmodium falciparum: inhibition of histone acetylation and generation of reactive oxygen species. Antimicrob. Agents Chemother. 51, 488–494 (2007).

Nandakumar, D. N., Nagaraj, V. A., Vathsala, P. G., Rangarajan, P. & Padmanaban, G. Curcumin–artemisinin combination therapy for malaria. Antimicrob. Agents Chemother. 50, 1859–1860 (2006).

Drew, R. H. & Gallis, H. A. Azithromycin — spectrum of activity, pharmacokinetics, and clinical applications. Pharmacotherapy 12, 161–173 (1992).

Fernandez-Cuenca, F., Martinez-Martinez, L., Pascual, A. & Perea, E. J. In vitro activity of azithromycin in combination with amikacin, ceftazidime, ciprofloxacin or imipenem against clinical isolates of Acinobacter baumannii. Chemotherapy 49, 24–26 (2003).

Furuya, R. et al. In vitro synergistic effects of double combinations of β-lactams and azithromycin against clinical isolates of Neisseria gonorrhoeae. J. Infect. Chemother. 12, 172–176 (2006).

Huang, W. et al. Ion channel behavior of amphotericin B in sterol-free and cholesterol- or ergosterol-containing supported phosphatidylcholine bilayer model membranes investigated by electrochemistry and spectroscopy. Biophys. J. 83, 3245–3255 (2002).

Walsh, T. J. et al. New targets and delivery systems for antifungal therapy. Med. Mycol. 38 (Suppl. 1), 335–347 (2000).

Meletiadis, J. et al. Triazole-polyene antagonism in experimental invasive pulmonary aspergillosis: in vitro and in vivo correlation. J. Infect. Dis. 194, 1008–1018 (2006).

Carrillo-Munoz, A. J., Giusiano, G., Ezkurra, P. A. & Quindos, G. Antifungal agents: mode of action in yeast cells. Rev. Esp. Quimioter. 19, 130–139 (2006).

Narishetty, S. T. & Panchagnula, R. Effect of L-menthol and 1,8-cineole on phase behavior and molecular organization of SC lipids and skin permeation of zidovudine. J. Control. Release 102, 59–70 (2005).

Narishetty, S. T. & Panchagnula, R. Transdermal delivery of zidovudine: effect of terpenes and their mechanism of action. J. Control. Release 95, 367–379 (2004).

Shitara, Y., Hirano, M., Sato, H. & Sugiyama, Y. Gemfibrozil and its glucuronide inhibit the organic anion transporting polypeptide 2 (OATP2/OATP1B1:SLC21A6)-mediated hepatic uptake and CYP2C8-mediated metabolism of cerivastatin: analysis of the mechanism of the clinically relevant drug–drug interaction between cerivastatin and gemfibrozil. J. Pharmacol. Exp. Ther. 311, 228–236 (2004).

Fujino, H. et al. Studies on the interaction between fibrates and statins using human hepatic microsomes. Arzneimittelforschung 53, 701–707 (2003).

Prueksaritanont, T. et al. Effects of fibrates on metabolism of statins in human hepatocytes. Drug Metab. Dispos. 30, 1280–1287 (2002).

Minotti, G. et al. Paclitaxel and docetaxel enhance the metabolism of doxorubicin to toxic species in human myocardium. Clin. Cancer Res. 7, 1511–1515 (2001).

Menez, C., Legrand, P., Rosilio, V., Lesieur, S. & Barratt, G. Physicochemical characterization of molecular assemblies of miltefosine and amphotericin B. Mol. Pharm. 4, 281–288 (2007).

Menez, C. et al. Interaction between miltefosine and amphotericin B: consequences for their activities towards intestinal epithelial cells and Leishmania donovani promastigotes in vitro. Antimicrob. Agents Chemother. 50, 3793–3800 (2006).

Zicca, A. et al. Reduction of cisplatin hepatotoxicity by procainamide hydrochloride in rats. Eur. J. Pharmacol. 442, 265–272 (2002).

Kaminsky, L. S. & Zhang, Z. Y. Human P450 metabolism of warfarin. Pharmacol. Ther. 73, 67–74 (1997).

Ngui, J. S. et al. In vitro stimulation of warfarin metabolism by quinidine: increases in the formation of 4′- and 10-hydroxywarfarin. Drug Metab. Dispos. 29, 877–886 (2001).

Rolinson, G. N. Effect of β-lactam antibiotics on bacterial cell growth rate. J. Gen. Microbiol. 120, 317–323 (1980).

Cole, M. Biochemistry and action of clavulanic acid. Scott. Med. J. 27, S10–S16 (1982).

Nials, A. T., Sumner, M. J., Johnson, M. & Coleman, R. A. Investigations into factors determining the duration of action of the β2-adrenoceptor agonist, salmeterol. Br. J. Pharmacol. 108, 507–515 (1993).

Mamani-Matsuda, M. et al. Long-acting β2-adrenergic formoterol and salmeterol induce the apoptosis of B-chronic lymphocytic leukaemia cells. Br. J. Haematol. 124, 141–150 (2004).

Meltzer, E. O. The pharmacological basis for the treatment of perennial allergic rhinitis and non-allergic rhinitis with topical corticosteroids. Allergy 52, 33–40 (1997).

Zhang, X., Moilanen, E. & Kankaanranta, H. Enhancement of human eosinophil apoptosis by fluticasone propionate, budesonide, and beclomethasone. Eur. J. Pharmacol. 406, 325–332 (2000).

Meekins, C. V., Sullivan, T. J. & Gruchalla, R. S. Immunochemical analysis of sulfonamide drug allergy: identification of sulfamethoxazole-substituted human serum proteins. J. Allergy Clin. Immunol. 94, 1017–1024 (1994).

Lowe, P. A. & Malcolm, A. D. Rifampicin binding as a probe for subunit interactions in Escherchia coli RNA polymerase. Biochim. Biophys. Acta 454, 129–137 (1976).

Lee-Huang, S., Lee, H. & Ochoa, S. Inhibition of polypeptide chain initiation in Escherichia coli by elongation factor G. Proc. Natl Acad. Sci. USA 71, 2928–2931 (1974).

Biebricher, C. K. & Druminski, M. Inhibition of RNA polymerase activity by the Escherichia coli protein biosynthesis elongation factor Ts. Proc. Natl Acad. Sci. USA 77, 866–869 (1980).

Rojo, F., Ayala, J. A., De Pedro, M. A. & Vazquez, D. Analysis of the different molecular forms of penicillin-binding protein 1B in Escherichia coli ponB mutants lysogenized with specialized transducing lambda (ponB+) bacteriophages. Eur. J. Biochem. 144, 571–576 (1984).

Villalon, C. M. et al. Canine external carotid vasoconstriction to methysergide, ergotamine and dihydroergotamine: role of 5-HT1B/1D receptors and α2-adrenoceptors. Br. J. Pharmacol. 126, 585–594 (1999).

Badia, A., Moron, A., Cuffi, L. & Vila, E. Effects of ergotamine on cardiovascular catecholamine receptors in the pithed rat. Gen. Pharmacol. 19, 475–481 (1988).

Boulenger, J. P., Patel, J. & Marangos, P. J. Effects of caffeine and theophylline on adenosine and benzodiazepine receptors in human brain. Neurosci. Lett. 30, 161–166 (1982).

Mukhopadhyay, S. & Poddar, M. K. Caffeine-induced locomotor activity: possible involvement of GABAergic-dopaminergic-adenosinergic interaction. Neurochem. Res. 20, 39–44 (1995).

Levin, R. M., Greenberg, S. H. & Wein., A. J. Quantitative analysis of the effects of caffeine on sperm motility and cyclic adenosine 3′,5′-monophosphate (AMP) phosphodiesterase. Fertil. Steril. 36, 798–802 (1981).

Ganji, S. H., Kamanna, V. S. & Kashyap, M. L. Niacin and cholesterol: role in cardiovascular disease (review). J. Nutr. Biochem. 14, 298–305 (2003).

Mehta, J. R., Przybylski, M. & Ludlum, D. B. Alkylation of guanosine and deoxyguanosine by phosphoramide mustard. Cancer Res. 40, 4183–4186 (1980).

Pinedo, H. M. & Peters, G. F. Fluorouracil: biochemistry and pharmacology. J. Clin. Oncol. 6, 1653–1664 (1988).

Sun, X. X., Dai, M. S. & Lu, H. 5-fluorouracil activation of p53 involves an MDM2-ribosomal protein interaction. J. Biol. Chem. 282, 8052–8059 (2007).

Bertolini, A. et al. Paracetamol: new vistas of an old drug. CNS Drug Rev. 12, 250–275 (2006).

Hinz, B., Cheremina, O. & Brune, K. Acetaminophen (paracetamol) is a selective cyclooxygenase-2 inhibitor in man. FASEB J. 22, 383–390 (2008).