Mechanisms of action of inhaled fibers, particles and nanoparticles in lung and cardiovascular diseases

Springer Science and Business Media LLC - Tập 4 - Trang 1-10 - 2007
Brooke T Mossman1, Paul J Borm2, Vincent Castranova3, Daniel L Costa4, Kenneth Donaldson5, Steven R Kleeberger6
1Department of Pathology, University of Vermont, Burlington, USA
2University of Heerlen, CEL, Heerlen, The Netherlands
3National Institute for Occupational Safety and Health, Health Effects Laboratory Division, Pathology and Physiology Research Branch, Morgantown, USA
4Environmental Protection Agency, Research Triangle Park, USA
5Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
6National Institute of Environmental Health Sciences, Research Triangle Park, USA

Tóm tắt

A symposium on the mechanisms of action of inhaled airborne particulate matter (PM), pathogenic particles and fibers such as silica and asbestos, and nanomaterials, defined as synthetic particles or fibers less than 100 nm in diameter, was held on October 27 and 28, 2005, at the Environmental Protection Agency (EPA) Conference Center in Research Triangle Park, North Carolina. The meeting was the eighth in a series of transatlantic conferences first held in Penarth, Wales, at the Medical Research Council Pneumoconiosis Unit (1979), that have fostered long-standing collaborations between researchers in the fields of mineralogy, cell and molecular biology, pathology, toxicology, and environmental/occupational health. The goal of this meeting, which was largely supported by a conference grant from the NHLBI, was to assemble a group of clinical and basic research scientists who presented and discussed new data on the mechanistic effects of inhaled particulates on the onset and development of morbidity and mortality in the lung and cardiovascular system. Another outcome of the meeting was the elucidation of a number of host susceptibility factors implicated in adverse health effects associated with inhaled pathogenic particulates. New models and data presented supported the paradigm that both genetic and environmental (and occupational) factors affect disease outcomes from inhaled particulates as well as cardiopulmonary responses. These future studies are encouraged to allow the design of appropriate strategies for prevention and treatment of particulate-associated morbidity and mortality, especially in susceptible populations.

Tài liệu tham khảo

Vineis P, Husgafvel-Pursiainen K: Air pollution and cancer: biomarker studies in human populations. Carcinogenesis 2005, 26: 1846–1855. 10.1093/carcin/bgi216 Riediker M, Cascio WE, Griggs TR, Herbst MC, Bromberg PA, Neas L, Williams RW, Devlin RB: Particulate matter exposure in cars is associated with cardiovascular effects in healthy young men. Am J Respir Crit Care Med 2004, 169: 934–940. 10.1164/rccm.200310-1463OC Peters A, von Klot S, Heier M, Trentinaglia I, Hormann A, Wichmann HE, Lowel H: Exposure to traffic and the onset of myocardial infarction. N Engl J Med 2004, 351: 1721–1730. 10.1056/NEJMoa040203 Schwartz J, Park SK, O'Neill MS, Vokonas PS, Sparrow D, Weiss S, Kelsey K: Glutathione-S-transferase M1, obesity, statins, and autonomic effects of particles: gene-by-drug-by-environment interaction. Am J Respir Crit Care Med 2005, 172: 1529–1533. 10.1164/rccm.200412-1698OC O'Neill MS, Veves A, Zanobetti A, Sarnat JA, Gold DR, Economides PA, Horton ES, Schwartz J: Diabetes enhances vulnerability to particulate air pollution-associated impairment in vascular reactivity and endothelial function. Circulation 2005, 111: 2913–2920. 10.1161/CIRCULATIONAHA.104.517110 Sun Q, Wang A, Jin X, Natanzon A, Duquaine D, Brook RD, Aguinaldo JG, Fayad ZA, Fuster V, Lippmann M, Chen LC, Rajagopalan S: Long-term air pollution exposure and acceleration of atherosclerosis and vascular inflammation in an animal model. Jama 2005, 294: 3003–3010. 10.1001/jama.294.23.3003 Nemmar A, Hoylaerts MF, Hoet PH, Dinsdale D, Smith T, Xu H, Vermylen J, Nemery B: Ultrafine particles affect experimental thrombosis in an in vivo hamster model. Am J Respir Crit Care Med 2002, 166: 998–1004. 10.1164/rccm.200110-026OC Whittaker A, BeruBe K, Jones T, Maynard R, Richards R: Killer smog of London, 50 years on: particle properties and oxidative capacity. Sci Total Environ 2004, 334–335. 435–445 BeruBe KA, Whittaker A, Jones TP, Moreno T, Merolla L: London's killer smog: how did they kill? Proceedings of the Royal Microscopy Society 2005, 40: 171–183. BeruBe K, Balharry D, Jones T, Hayden P, Moreno T, Hayden P, Sexton K, Hicks M, Merolla L, Timblin C, Shukla A, Mossman B: Characterisation of airborne particulate matter and related mechanisms of toxicity: an experimental approach. In Air Pollution and Health. Volume 3. Edited by: Ayers J, Maynard R, Richards R. London: Imperial College Press; 2006:69–110. Xiao GG, Wang M, Li N, Loo JA, Nel AE: Use of proteomics to demonstrate a hierarchical oxidative stress response to diesel exhaust particle chemicals in a macrophage cell line. J Biol Chem 2003, 278: 50781–50790. 10.1074/jbc.M306423200 Wang RD, Wright JL, Churg A: Transforming growth factor-beta1 drives airway remodeling in cigarette smoke-exposed tracheal explants. Am J Respir Cell Mol Biol 2005, 33: 387–393. 10.1165/rcmb.2005-0203OC Nurkiewicz TR, Porter DW, Barger M, Castranova V, Boegehold MA: Particulate matter exposure impairs systemic microvascular endothelium-dependent dilation. Environ Health Perspect 2004, 112: 1299–1306. Nurkiewicz TR, Porter DW, Barger M, Millecchia L, Rao KM, Marvar PJ, Hubbs AF, Castranova V, Boegehold MA: Systemic microvascular dysfunction and inflammation after pulmonary particulate matter exposure. Environ Health Perspect 2006, 114: 412–419. Gurgueira SA, Lawrence J, Coull B, Murthy GG, Gonzalez-Flecha B: Rapid increases in the steady-state concentration of reactive oxygen species in the lungs and heart after particulate air pollution inhalation. Environ Health Perspect 2002, 110: 749–755. Rhoden CR, Lawrence J, Godleski JJ, Gonzalez-Flecha B: N-acetylcysteine prevents lung inflammation after short-term inhalation exposure to concentrated ambient particles. Toxicol Sci 2004, 79: 296–303. 10.1093/toxsci/kfh122 Kim YM, Reed W, Wu W, Bromberg PA, Graves LM, Samet JM: Zn2+-induced IL-8 expression involves AP-1, JNK, and ERK activities in human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2006, 290: L1028–1035. 10.1152/ajplung.00479.2005 Tal TL, Graves LM, Silbajoris R, Bromberg PA, Wu W, Samet JM: Inhibition of protein tyrosine phosphatase activity mediates epidermal growth factor receptor signaling in human airway epithelial cells exposed to Zn2+ . Toxicol Appl Pharmacol 2006, 214: 16–23. 10.1016/j.taap.2005.11.011 Rice AB, Moomaw CR, Morgan DL, Bonner JC: Specific inhibitors of platelet-derived growth factor or epidermal growth factor receptor tyrosine kinase reduce pulmonary fibrosis in rats. Am J Pathol 1999, 155: 213–221. Bonner JC, Rice AB, Ingram JL, Moomaw CR, Nyska A, Bradbury A, Sessoms AR, Chulada PC, Morgan DL, Zeldin DC, Langenbach R: Susceptibility of cyclooxygenase-2-deficient mice to pulmonary fibrogenesis. Am J Pathol 2002, 161: 459–470. Walters DM, Antao-Menezes A, Ingram JL, Rice AB, Nyska A, Tani Y, Kleeberger SR, Bonner JC: Susceptibility of signal transducer and activator of transcription-1-deficient mice to pulmonary fibrogenesis. Am J Pathol 2005, 167: 1221–1229. Wesselkamper SC, Case LM, Henning LN, Borchers MT, Tichelaar JW, Mason JM, Dragin N, Medvedovic M, Sartor MA, Tomlinson CR, Leikauf GD: Gene expression changes during the development of acute lung injury: role of transforming growth factor beta. Am J Respir Crit Care Med 2005, 172: 1399–1411. 10.1164/rccm.200502-286OC Wesselkamper SC, McDowell SA, Medvedovic M, Dalton TP, Deshmukh HS, Sartor MA, Case LM, Henning LN, Borchers MT, Tomlinson CR, Prows DR, Leikauf GD: The role of metallothionein in the pathogenesis of acute lung injury. Am J Respir Cell Mol Biol 2006, 34: 73–82. 10.1165/rcmb.2005-0248OC Zhou YM, Zhong CY, Kennedy IM, Leppert VJ, Pinkerton KE: Oxidative stress and NFkappaB activation in the lungs of rats: a synergistic interaction between soot and iron particles. Toxicol Appl Pharmacol 2003, 190: 157–169. 10.1016/S0041-008X(03)00157-1 O'Hara KA, Nemec AA, Alam J, Klei LR, Mossman BT, Barchowsky A: Chromium (VI) inhibits heme oxygenase-1 expression in vivo and in arsenic-exposed human airway epithelial cells. J Cell Physiol 2006, 209: 113–121. 10.1002/jcp.20710 Shukla A, Gulumian M, Hei TK, Kamp D, Rahman Q, Mossman BT: Multiple roles of oxidants in the pathogenesis of asbestos-induced diseases. Free Radic Biol Med 2003, 34: 1117–1129. 10.1016/S0891-5849(03)00060-1 Favero-Longo SE, Turci F, Tomatis M, Castelli D, Bonfante P, Hochella MF, Piervittori R, Fubini B: Chrysotile asbestos is progressively converted into a non-fibrous amorphous material by the chelating action of lichen metabolites. J Environ Monit 2005, 7: 764–766. 10.1039/b507569f Zhao Y, El-Gabry M, Hei TK: Loss of Betaig-h3 protein is frequent in primary lung carcinoma and related to tumorigenic phenotype in lung cancer cells. Mol Carcinog 2006, 45: 84–92. 10.1002/mc.20167 Panduri V, Surapureddi S, Soberanes S, Weitzman SA, Chandel N, Kamp DW: P53 mediates amosite asbestos-induced alveolar epithelial cell mitochondria-regulated apoptosis. Am J Respir Cell Mol Biol 2006, 34: 443–452. 10.1165/rcmb.2005-0352OC Yuan Z, Taatjes DJ, Mossman BT, Heintz NH: The duration of nuclear extracellular signal-regulated kinase 1 and 2 signaling during cell cycle reentry distinguishes proliferation from apoptosis in response to asbestos. Cancer Res 2004, 64: 6530–6536. 10.1158/0008-5472.CAN-04-0946 Haegens A, van der Vliet A, Butnor KJ, Heintz N, Taatjes D, Hemenway D, Vacek P, Freeman BA, Hazen SL, Brennan ML, Mossman BT: Asbestos-induced lung inflammation and epithelial cell proliferation are altered in myeloperoxidase-null mice. Cancer Res 2005, 65: 9670–9677. 10.1158/0008-5472.CAN-05-1751 Sullivan DE, Ferris M, Pociask D, Brody AR: Tumor necrosis factor-alpha induces transforming growth factor-beta1 expression in lung fibroblasts through the extracellular signal-regulated kinase pathway. Am J Respir Cell Mol Biol 2005, 32: 342–349. 10.1165/rcmb.2004-0288OC Albrecht C, Knaapen AM, Becker A, Hohr D, Haberzettl P, van Schooten FJ, Borm PJ, Schins RP: The crucial role of particle surface reactivity in respirable quartz-induced reactive oxygen/nitrogen species formation and APE/Ref-1 induction in rat lung. Respir Res 2005, 6: 129. 10.1186/1465-9921-6-129 Fung H, Demple B: A vital role for Ape1/Ref1 protein in repairing spontaneous DNA damage in human cells. Mol Cell 2005, 17: 463–470. 10.1016/j.molcel.2004.12.029 Antonini JM, Leonard SS, Roberts JR, Solano-Lopez C, Young SH, Shi X, Taylor MD: Effect of stainless steel manual metal arc welding fume on free radical production, DNA damage, and apoptosis induction. Mol Cell Biochem 2005, 279: 17–23. 10.1007/s11010-005-8211-6 Antonini JM, Taylor MD, Millecchia L, Bebout AR, Roberts JR: Suppression in lung defense responses after bacterial infection in rats pretreated with different welding fumes. Toxicol Appl Pharmacol 2004, 200: 206–218. 10.1016/j.taap.2004.04.022 Antonini JM, Yang HM, Ma JY, Roberts JR, Barger MW, Butterworth L, Charron TG, Castranova V: Subchronic silica exposure enhances respiratory defense mechanisms and the pulmonary clearance of Listeria monocytogenes in rats. Inhal Toxicol 2000, 12: 1017–1036. 10.1080/08958370050164635 Beamer CA, Holian A: Scavenger receptor class A type I/II (CD204) null mice fail to develop fibrosis following silica exposure. Am J Physiol Lung Cell Mol Physiol 2005, 289: L186–195. 10.1152/ajplung.00474.2004 Zhang Q, Adiseshaiah P, Kalvakolanu DV, Reddy SP: A Phosphatidylinositol 3-kinase-regulated Akt-independent signaling promotes cigarette smoke-induced FRA-1 expression. J Biol Chem 2006, 281: 10174–10181. 10.1074/jbc.M513008200 Steele MP, Speer MC, Loyd JE, Brown KK, Herron A, Slifer SH, Burch LH, Wahidi MM, Phillips JA 3rd, Sporn TA, McAdams HP, Schwarz MI, Schwartz DA: Clinical and pathologic features of familial interstitial pneumonia. Am J Respir Crit Care Med 2005, 172: 1146–1152. 10.1164/rccm.200408-1104OC Oberdorster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D, Olin S, Monteiro-Riviere N, Warheit D, Yang H: Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2005, 2: 8. 10.1186/1743-8977-2-8 Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ, Potapovich AI, Tyurina YY, Gorelik O, Arepalli S, Schwegler-Berry D, Hubbs AF, Antonini J, Evans DE, Ku BK, Ramsey D, Maynard A, Kagan VE, Castranova V, Baron P: Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol 2005, 289: L698–708. 10.1152/ajplung.00084.2005 Donaldson K, Tran L, Jimenez LA, Duffin R, Newby DE, Mills N, MacNee W, Stone V: Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure. Part Fibre Toxicol 2005, 2: 10. 10.1186/1743-8977-2-10 Mills NL, Tornqvist H, Robinson SD, Gonzalez M, Darnley K, MacNee W, Boon NA, Donaldson K, Blomberg A, Sandstrom T, Newby DE: Diesel exhaust inhalation causes vascular dysfunction and impaired endogenous fibrinolysis. Circulation 2005, 112: 3930–3936. 10.1161/CIRCULATIONAHA.105.588962 Blumen SR, Cheng K, Ramos-Nino ME, Taatjes DJ, Weiss DJ, Landry CC, Mossman BT: Unique uptake of acid-prepared mesoporous spheres by lung epithelial and mesothelioma cells. Am J Respir Cell Mol Biol 2007, 36: 333–342. 10.1165/rcmb.2006-0319OC