Mechanisms of Ytterbium Monosilicate/Mullite/Silicon Coating Failure During Thermal Cycling in Water Vapor

Journal of the American Ceramic Society - Tập 98 Số 12 - Trang 4066-4075 - 2015
Bradley T. Richards1, Matthew R. Begley2, H.N.G. Wadley1
1Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia, 22903
2Departments of Mechanical Engineering and Materials, University of California Santa Barbara, Santa Barbara, California, 93106

Tóm tắt

An air plasma spray process has been used to apply a model tri‐layer Yb2SiO5/Al6Si2O13/Si environmental barrier coating system on SiC test coupons. Significant differences in the thermal expansion of the component layers resulted in periodically spaced mud cracks in the Yb2SiO5 and Al6Si2O13 layers. Upon thermal cycling between 1316°C and 110°C in a 90% H2O/10% O2 environment flowing at 4.4 cm/s, it was found that partial delamination occurred with the fracture plane located within a thermally grown oxide (TGO) at the Al6Si2O13–Si interface. Delamination initiated at test coupon edges where the gaseous environment preferentially oxidized the exposed Si bond coat to form β‐cristobalite. Simultaneous ingress of the gaseous environment through mud cracks initiated local formation of β‐cristobalite (SiO2), the thickness of which was greatest directly below mud cracks. Upon cooling, cristobalite transformed from the β to α phase with a large, constrained volume contraction that resulted in severe microfracture of the TGO. Continued thermal cycling eventually propagated delamination cracks and caused partial spallation of the coatings. Formation of the cristobalite TGO appears to be the delamination life‐determining factor in protective coating systems utilizing a Si bond coat.

Từ khóa


Tài liệu tham khảo

Boyce M. P., 2011, Gas Turbine Engineering Handbook

Giampaolo T., 2003, The Gas Turbine Handbook: Principles and Practices

10.1002/9780470774533

10.1126/science.1179327

10.1016/0266-3538(91)90010-M

10.1016/0079-6425(89)90005-4

10.1111/j.1151-2916.1985.tb15313.x

10.1016/0001-6160(89)90291-5

10.1007/0-387-23986-3_4

10.1111/j.1151-2916.1998.tb02621.x

10.1016/j.compscitech.2008.08.028

10.1111/j.1151-2916.1999.tb01810.x

10.1111/j.1151-2916.2003.tb03459.x

10.1111/j.1151-2916.1997.tb02935.x

10.1111/j.1151-2916.1997.tb02810.x

10.1111/j.1151-2916.1999.tb02005.x

10.1016/S1359-0286(96)80049-0

10.1111/j.1151-2916.1995.tb08621.x

10.1111/j.1151-2916.1998.tb02598.x

10.1016/S0955-2219(02)00268-6

10.1002/9780470294574.ch13

10.1007/s10443-006-9009-8

Lee K. N., 2005, Rare Earth Silicate Environmental Barrier Coatings for SiC/SiC Composites and Si3N4 Ceramics, Corrosion of Ceramic Matrix Composites, 25, 1705

10.1557/S088376940004820X

10.1016/S0257-8972(00)00889-6

10.1115/1.1287584

Lee K. N., 2006, The Gas Turbine Handbook, 431

10.1111/j.1551-2916.2005.00640.x

10.1111/j.1151-2916.2003.tb03466.x

10.1016/S0257-8972(96)03074-5

10.1016/j.jeurceramsoc.2014.04.027

Jacobson N. S., 2005, ASM Handbook, 565

10.1111/j.1151-2916.1998.tb02777.x

10.1111/j.1151-2916.1996.tb07920.x

D.Zhu S. R.Choi J. I.Eldridge K. N.Lee andR. A.Miller “Surface Cracking and Interface Reaction Associated Delamination Failure of Thermal and Environmental Barrier Coatings ”Symposium on Advanced Ceramic Coatings for Structural Environmental and Functional Applications 27th Annual International Conference on Advanced Ceramics and Composites. 26–31 JanuaryCocoa Beach FL 2005. NASA NTRS 20050212126

10.1115/GT2002-30632

D.Zhu K. N.Lee andR. A.Miller “Cyclic Failure Mechanisms of Thermal and Environmental Barrier Coating Systems Under Thermal Gradient Test Conditions ” NASA/TM‐2002‐211478 (2002).

10.1016/j.ijsolstr.2013.12.029

10.1111/j.1551-2916.2007.01803.x

10.1007/s00269-006-0113-y

10.1111/j.1151-2916.1995.tb08236.x

10.1111/j.1151-2916.1998.tb02441.x

10.1111/j.1151-2916.1983.tb10532.x

10.1524/zkri.1973.138.138.274

10.1016/S0022-3093(01)00795-5

10.1016/j.ijrmms.2006.04.011

10.1029/98GL01581

10.1109/TUFFC.2010.1372

Hull R., 1999, Properties of Crystalline Silicon

10.1007/BF02646313

J. T.DemasiandM.Ortiz “Thermal Barrier Coating Life Prediction Model Development Phase 1 ” NASA Contractor Report 182230 (1989).

10.1111/j.1151-2916.1997.tb03093.x

10.1361/105996302770348754

10.1115/1.2906581

B. T.Richards L. J.Ghosn D.Zhu andH.Wadley “Mechanical Properties of Air Plasma Sprayed Environmental Barrier Coating (EBC) Systems: Preliminary Assessments”; Proceedings of the 39th International Conference and Exposition on Advanced Ceramics and Composites. 25–30 January 2015 Daytona Beach Fl (in press).

10.1111/j.1744-7402.2004.tb00184.x

10.1361/105996398770350747

10.1023/A:1018574221589

10.1063/1.1678878

10.1016/0022-3093(85)90308-4

10.1007/s00269-003-0320-8

10.1007/BF00202234

10.1080/14786437608221095

10.1016/0022-3093(77)90010-2

10.1016/S0892-6875(02)00213-3

Freund L. B., 2003, Thin Film Materials: Stress, Defect Formation, and Surface Evolution, 750

10.1111/j.1151-2916.2000.tb01172.x

10.1111/j.1151-2916.2003.tb03460.x