Mechanisms of TGF-β Signaling from Cell Membrane to the Nucleus

Cell - Tập 113 Số 6 - Trang 685-700 - 2003
Yigong Shi1, Joan Massagué2
1Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
2Cell Biology Program, Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abdollah, 1997, TβRI phosphorylation of Smad2 on Ser465 and Ser467 is required for Smad2-Smad4 complex formation and signaling, J. Biol. Chem., 272, 27678, 10.1074/jbc.272.44.27678

Abreu, 2002, Connective-tissue growth factor (CTGF) modulates cell signalling by BMP and TGF-β, Nat. Cell Biol., 4, 599, 10.1038/ncb826

Attisano, 2000, Smads as transcriptional co-modulators, Curr. Opin. Cell Biol., 12, 235, 10.1016/S0955-0674(99)00081-2

Bai, 2002, SMIF, a Smad4-interacting protein that functions as a co-activator in TGFβ signalling, Nat. Cell Biol., 4, 181, 10.1038/ncb753

Balemans, 2002, Extracellular regulation of BMP signaling in vertebrates, Dev. Biol., 250, 231, 10.1006/dbio.2002.0779

Bhowmick, 2001, Transforming growth factor-β1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism, Mol. Biol. Cell, 12, 27, 10.1091/mbc.12.1.27

Bitzer, 2000, A mechanism of suppression of TGF-β/SMAD signaling by NF-kappa B/RelA, Genes Dev., 14, 187, 10.1101/gad.14.2.187

Boesen, 2002, The 1.1 Å crystal structure of human TGF-β type II receptor ligand binding domain, Structure, 10, 913, 10.1016/S0969-2126(02)00780-3

Bonni, 2001, TGF-β induces assembly of a Smad2-Smurf2 ubiquitin ligase complex that targets SnoN for degradation, Nat. Cell Biol., 3, 587, 10.1038/35078562

Brown, 1999, Requirement of type III TGF-β receptor for endocardial cell transformation in the heart, Science, 283, 2080, 10.1126/science.283.5410.2080

Brown, 1999, MEKK-1, a component of the stress (stress-activated protein kinase/c-Jun N-terminal kinase) pathway, can selectively activate Smad2-mediated transcriptional activation in endothelial cells, J. Biol. Chem., 274, 8797, 10.1074/jbc.274.13.8797

Brunet, 1998, Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton, Science, 280, 1455, 10.1126/science.280.5368.1455

Chacko, 2001, The L3 loop and C-terminal phosphorylation jointly define Smad protein trimerization, Nat. Struct. Biol., 8, 248, 10.1038/84995

Chai, 2003, Features of a Smad3 MH1-DNA complex, J. Biol. Chem., in press

Chen, 2002, E2F4/5 and p107 as Smad cofactors linking the TGFβ receptor to c-myc repression, Cell, 110, 19, 10.1016/S0092-8674(02)00801-2

Chen, 1998, Determinants of specificity in the TGF-β signal transduction, Genes Dev., 12, 2144, 10.1101/gad.12.14.2144

Cheng, 2003, EGF-CFC proteins are essential coreceptors for the TGF-β signals Vg1 and GDF1, Genes Dev., 17, 31, 10.1101/gad.1041203

Choo, 1997, Physical basis of a protein-DNA recognition code, Curr. Opin. Struct. Biol., 7, 117, 10.1016/S0959-440X(97)80015-2

Datta, 2000, STRAP and Smad7 synergize in the inhibition of transforming growth factor β signaling, Mol. Cell. Biol., 20, 3157, 10.1128/MCB.20.9.3157-3167.2000

De Caestecker, 2001, Bone morphogenetic proteins, genetics and the pathophysiology of primary pulmonary hypertension, Respir. Res., 2, 193, 10.1186/rr57

Denissova, 2000, Transforming growth factor β-inducible independent binding of SMAD to the Smad7 promoter, Proc. Natl. Acad. Sci. USA, 97, 6397, 10.1073/pnas.090099297

Dennler, 1998, Direct binding of Smad3 and Smad4 to critical TGFβ-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene, EMBO J., 17, 3091, 10.1093/emboj/17.11.3091

Derynck, 1996, Nomenclature, Cell, 87, 173, 10.1016/S0092-8674(00)81335-5

Derynck, 1998, Smads, Cell, 95, 737, 10.1016/S0092-8674(00)81696-7

Di Guglielmo, 2003, Distinct endocytic pathways regulate TGFβ receptor signaling and turnover, Nat. Cell Biol., 5, 410, 10.1038/ncb975

Ebisawa, 2001, Smurf1 interacts with transforming growth factor-β type I receptor through Smad7 and induces receptor degradation, J. Biol. Chem., 276, 12477, 10.1074/jbc.C100008200

Feng, 1997, A kinase subdomain of transforming growth factor-β (TGF-β) type I receptor determines the TGF-β intracellular signaling specificity, EMBO J., 16, 3912, 10.1093/emboj/16.13.3912

Feng, 2000, Smad2, Smad3 and Smad4 cooperate with Sp1 to induce p15(Ink4B) transcription in response to TGF-β, EMBO J., 19, 5178, 10.1093/emboj/19.19.5178

Fukuchi, 2001, Ligand-dependent degradation of Smad3 by a ubiquitin ligase complex of ROC1 and associated proteins, Mol. Biol. Cell, 12, 1431, 10.1091/mbc.12.5.1431

Furuhashi, 2001, Axin facilitates Smad3 activation in the transforming growth factor β signaling pathway, Mol. Cell. Biol., 21, 5132, 10.1128/MCB.21.15.5132-5141.2001

Gong, 1999, Heterozygous mutations in the gene encoding noggin affect human joint morphogenesis, Nat. Genet., 21, 302, 10.1038/6821

Gorlich, 1999, Transport between the cell nucleus and the cytoplasm, Annu. Rev. Cell Dev. Biol., 15, 607, 10.1146/annurev.cellbio.15.1.607

Goumans, 2002, Balancing the activation state of the endothelium via two distinct TGF-β type I receptors, EMBO J., 21, 1743, 10.1093/emboj/21.7.1743

Gray, 2000, Identification of a binding site on the type II activin receptor for activin and inhibin, J. Biol. Chem., 275, 3206, 10.1074/jbc.275.5.3206

Greenwald, 1999, Three-finger toxin fold for the extracellular ligand-binding domain of the type II activin receptor serine kinase, Nat. Struct. Biol., 6, 18, 10.1038/4887

Greenwald, 2003, The BMP7/ActRII extracellular domain complex provides new insights into the cooperative nature of receptor assembly, Mol. Cell, 11, 605, 10.1016/S1097-2765(03)00094-7

Grimm, 2002, Nuclear exclusion of Smad2 is a mechanism leading to loss of competence, Nat. Cell Biol., 4, 519, 10.1038/ncb812

Grishin, 2001, MH1 domain of Smad is a degraded homing endonuclease, J. Mol. Biol., 307, 31, 10.1006/jmbi.2000.4486

Gronroos, 2002, Control of Smad7 stability by competition between acetylation and ubiquitination, Mol. Cell, 10, 483, 10.1016/S1097-2765(02)00639-1

Groppe, 2002, Structural basis of BMP signalling inhibition by the cystine knot protein Noggin, Nature, 420, 636, 10.1038/nature01245

Harland, 2001, Developmental biology. A twist on embryonic signalling, Nature, 410, 423, 10.1038/35068657

Hart, 2002, Crystal structure of the human TβR2 ectodomain-TGF-β3 complex, Nat. Struct. Biol., 9, 203

Hata, 1998, Smad6 inhibits BMP/Smad1 signaling by specifically competing with the Smad4 tumour suppressor, Genes Dev., 12, 186, 10.1101/gad.12.2.186

Hayes, 2002, TGF-β receptor internalization into EEA1-enriched early endosomes, J. Cell Biol., 158, 1239, 10.1083/jcb.200204088

Hocevar, 2001, The adaptor molecule Disabled-2 links the transforming growth factor β receptors to the Smad pathway, EMBO J., 20, 2789, 10.1093/emboj/20.11.2789

Hoodless, 1999, Dominant-negative Smad2 mutants inhibit activin/Vg1 signaling and disrupt axis formation in Xenopus, Dev. Biol., 207, 364, 10.1006/dbio.1998.9168

Huse, 1999, Crystal structure of the cytoplasmic domain of the type I TGF-β receptor in complex with FKBP12, Cell, 96, 425, 10.1016/S0092-8674(00)80555-3

Huse, 2001, The TGF-β receptor activation process, Mol. Cell, 8, 671, 10.1016/S1097-2765(01)00332-X

Inman, 2002, Stoichiometry of active Smad-transcription factor complexes on DNA, J. Biol. Chem., 277, 51008, 10.1074/jbc.M208532200

Inman, 2002, Nucleocytoplasmic shuttling of Smads 2, 3, and 4 permits sensing of TGF-β receptor activity, Mol. Cell, 10, 283, 10.1016/S1097-2765(02)00585-3

Ishida, 2000, Smad6 is a Smad1/5-induced smad inhibitor. Characterization of bone morphogenetic protein-responsive element in the mouse Smad6 promoter, J. Biol. Chem., 275, 6075, 10.1074/jbc.275.9.6075

Itoh, 2001, Promoting bone morphogenetic protein signaling through negative regulation of inhibitory Smads, EMBO J., 20, 4132, 10.1093/emboj/20.15.4132

Itoh, 1998, Transforming growth factor β1 induces nuclear export of inhibitory Smad7, J. Biol. Chem., 273, 29195, 10.1074/jbc.273.44.29195

Itoh, 2003, Elucidation of Smad requirement in transforming growth factor-β type I receptor-induced responses, J. Biol. Chem., 278, 3751, 10.1074/jbc.M208258200

Jayaraman, 2000, Distinct oligomeric states of SMAD proteins in the TGF-β pathway, J. Biol. Chem., 275, 40710, 10.1074/jbc.M005799200

Johnson, 1999, Interaction of Smad complexes with tripartite DNA-binding sites, J. Biol. Chem., 274, 20709, 10.1074/jbc.274.29.20709

Kang, 2003, A self-enabling TGFβ response coupled to stress signaling, Mol. Cell, 11, 915, 10.1016/S1097-2765(03)00109-6

Kato, 2002, A component of the ARC/Mediator complex required for TGFβ/Nodal signalling, Nature, 418, 641, 10.1038/nature00969

Kavsak, 2000, Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF-β receptor for degradation, Mol. Cell, 6, 1365, 10.1016/S1097-2765(00)00134-9

Kawabata, 1998, Smad proteins exist as monomers in vivo and undergo homo- and hetero-oligomerization upon activation by serine/threonine kinase receptors, EMBO J., 17, 4056, 10.1093/emboj/17.14.4056

Kim, 1997, Drosophila Mad binds to DNA and directly mediates activation of vestigial by Decapentaplegic, Nature, 388, 304, 10.1038/40906

Kirsch, 2000, Crystal structure of the BMP-2-BRIA ectodomain complex, Nat. Struct. Biol., 7, 492, 10.1038/75903

Kraulis, 1991, Molscript, J. Appl. Crystallogr., 24, 946, 10.1107/S0021889891004399

Kretzschmar, 1997, The TGF-β family mediator Smad1 is phosphorylated directly and activated functionally by the BMP receptor kinase, Genes Dev., 11, 984, 10.1101/gad.11.8.984

Kretzschmar, 1999, A mechanism of repression of TGF-β/Smad signaling by oncogenic Ras, Genes Dev., 13, 804, 10.1101/gad.13.7.804

Kurisaki, 2001, Transforming growth factor-β induces nuclear import of Smad3 in an importin-β1 and Ran-dependent manner, Mol. Biol. Cell, 12, 1079, 10.1091/mbc.12.4.1079

Labbe, 1998, Smad2 and Smad3 positively and negatively regulate TGF-β-dependent transcription through the forkhead DNA-binding protein FAST2, Mol. Cell, 2, 109, 10.1016/S1097-2765(00)80119-7

Lander, 2001, Initial sequencing and analysis of the human genome, Nature, 409, 860, 10.1038/35057062

Lewis, 2000, Betaglycan binds inhibin and can mediate functional antagonism of activin signalling, Nature, 404, 411, 10.1038/35006129

Lim, 2000, Noggin antagonizes BMP signaling to create a niche for adult neurogenesis, Neuron, 28, 713, 10.1016/S0896-6273(00)00148-3

Lin, 2000, Smurf2 is a ubiquitin E3 ligase mediating proteasome-dependent degradation of Smad2 in TGF-β signaling, J. Biol. Chem., 275, 36818, 10.1074/jbc.C000580200

Liu, 1997, Dual role of the Smad4/DPC4 tumor suppressor in TGF-β-inducible transcriptional complexes, Genes Dev., 11, 3157, 10.1101/gad.11.23.3157

Liu, 2001, Ski/Sno and TGF-β signaling, Cytokine Growth Factor Rev., 12, 1, 10.1016/S1359-6101(00)00031-9

Lo, 1999, Ubiquitin-dependent degradation of TGF-β-activated Smad2, Nat. Cell Biol., 1, 472, 10.1038/70258

Lo, 1998, The L3 loop, EMBO J., 17, 996, 10.1093/emboj/17.4.996

Lo, 2001, Epidermal growth factor signaling via Ras controls the Smad transcriptional co-repressor TGIF, EMBO J., 20, 128, 10.1093/emboj/20.1.128

Lu, 2002, Transforming growth factor β activates Smad2 in the absence of receptor endocytosis, J. Biol. Chem., 277, 29363, 10.1074/jbc.M203495200

Luo, 1999, The Ski oncoprotein interacts with the Smad proteins to repress TGF-β signaling, Genes Dev., 13, 2196, 10.1101/gad.13.17.2196

Macias-Silva, 1996, MADR2 is a substrate of the TGF-β receptor and its phosphorylation is required for nuclear accumulation and signalling, Cell, 87, 1215, 10.1016/S0092-8674(00)81817-6

Manning, 2002, The protein kinase complement of the human genome, Science, 298, 1912, 10.1126/science.1075762

Marchuk, 1998, Genetic abnormalities in hereditary hemorrhagic telangiectasia, Curr. Opin. Hematol., 5, 332, 10.1097/00062752-199809000-00005

Marlow, 2003, Solution structure of the chick TGF-β type II receptor ligand-binding domain, J. Mol. Biol., 326, 989, 10.1016/S0022-2836(03)00023-8

Massagué, 1998, TGF-β signal transduction, Annu. Rev. Biochem., 67, 753, 10.1146/annurev.biochem.67.1.753

Massagué, 2000, How cells read TGF-β signals, Nat. Rev. Mol. Cell Biol., 1, 169, 10.1038/35043051

Massagué, 2000, Controlling TGF-β signaling, Genes Dev., 14, 627, 10.1101/gad.14.6.627

Massagué, 2000, Transcriptional control by the TGF-β/Smad signaling system, EMBO J., 19, 1745, 10.1093/emboj/19.8.1745

Massagué, 2000, TGF-β Signaling in growth control, cancer, and heritable disorders, Cell, 103, 295, 10.1016/S0092-8674(00)00121-5

Mattaj, 1998, Nucleocytoplasmic transport, Annu. Rev. Biochem., 67, 265, 10.1146/annurev.biochem.67.1.265

Mirura, 2000, Hgs (Hrs), a FYVE domain protein, is involved in Smad signaling through cooperation with SARA, Mol. Cell. Biol., 20, 9346, 10.1128/MCB.20.24.9346-9355.2000

Mittl, 1996, The crystal structure of TGF-beta 3 and comparison to TGF-β2, Protein Sci., 5, 1261, 10.1002/pro.5560050705

Nishihara, 2002, Functional heterogeneity of bone morphogenetic protein receptor-II mutants found in patients with primary pulmonary hypertension, Mol. Biol. Cell, 13, 3055, 10.1091/mbc.e02-02-0063

Onichtchouk, 1999, Silencing of TGF-β signalling by the pseudoreceptor BAMBI, Nature, 401, 480, 10.1038/46794

Patterson, 2000, TGF-β-related pathways. Roles in Caenorhabditis elegans development, Trends Genet., 16, 27, 10.1016/S0168-9525(99)01916-2

Petritsch, 2000, TGF-β inhibits p70 S6 kinase via protein phosphatase 2A to induce G1 arrest, Genes Dev., 14, 3093, 10.1101/gad.854200

Pierreux, 2000, Transforming growth factor β-independent shuttling of Smad4 between the cytoplasm and nucleus, Mol. Biol. Cell, 20, 9041, 10.1128/MCB.20.23.9041-9054.2000

Qin, 2001, Structural basis of Smad1 activation by receptor kinase phosphorylation, Mol. Cell, 8, 1303, 10.1016/S1097-2765(01)00417-8

Randall, 2002, Different Smad2 partners bind a common hydrophobic pocket in Smad2 via a defined proline-rich motif, EMBO J., 21, 145, 10.1093/emboj/21.1.145

Rosa, F.M. (2002). Cripto, a multifunctional partner in signaling: molecular forms and activities. Sci. STKE (158), pe47.

Saha, 2001, Oncogenic ras represses transforming growth factor-β/Smad signaling by degrading tumor suppressor Smad4, J. Biol. Chem., 276, 29531, 10.1074/jbc.M100069200

Sekelsky, 1995, Genetic characterization and cloning of mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster, Genetics, 139, 1347, 10.1093/genetics/139.3.1347

Seoane, 2001, TGF-β influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b, Nat. Cell Biol., 3, 400, 10.1038/35070086

Shen, 2000, The EGF-CFC gene family in vertebrate development, Trends Genet., 16, 303, 10.1016/S0168-9525(00)02006-0

Shi, 2001, Structural insights on Smad function in TGF-β signaling, Bioessays, 23, 223, 10.1002/1521-1878(200103)23:3<223::AID-BIES1032>3.0.CO;2-U

Shi, 1998, Crystal structure of a Smad MH1 domain bound to DNA, Cell, 94, 585, 10.1016/S0092-8674(00)81600-1

Souchelnytskyi, 1997, Phosphorylation of Ser465 and Ser467 in the C terminus of Smad2 mediates interaction with Smad4 and is required for transforming growth factor-beta signaling, J. Biol. Chem., 272, 28107, 10.1074/jbc.272.44.28107

Staller, 2001, Repression of p15INK4b expression by Myc through association with Miz-1, Nat. Cell Biol., 3, 392, 10.1038/35070076

Stroschein, 1999, Negative feedback regulation of TGF-β signaling by the SnoN oncoprotein, Science, 286, 771, 10.1126/science.286.5440.771

Stroschein, 2001, Smad3 recruits the anaphase-promoting complex for ubiquitination and degradation of SnoN, Genes Dev., 15, 2822, 10.1101/gad.912901

Sun, 1995, The cysteine-knot growth-factor superfamily, Annu. Rev. Biophys. Biomol. Struct., 24, 269, 10.1146/annurev.bb.24.060195.001413

Suzuki, 2002, Smurf1 regulates the inhibitory activity of Smad7 by targeting Smad7 to the plasma membrane, J. Biol. Chem., 277, 39919, 10.1074/jbc.M201901200

Tajima, 2003, Chromosomal region maitenance 1 (CRM1)-dependent nuclear export of Smad ubiquitin regulatory factor 1 (Smurf1) is essential for negative regulation of transforming growth factor-β signaling by Smad7, J. Biol. Chem., 278, 10716, 10.1074/jbc.M212663200

Tang, 2003, Disruption of transforming growth factor-β signaling in ELF β-spectrin–deficient mice, Science, 299, 574, 10.1126/science.1075994

ten Dijke, 2000, Signaling inputs converge on nuclear effectors in TGF-β signaling, Trends Biochem. Sci., 25, 64, 10.1016/S0968-0004(99)01519-4

ten Dijke, 2002, Regulation of Cell Proliferation by Smad Proteins, J. Cell. Physiol., 191, 1, 10.1002/jcp.10066

Thompson, 2003, Structures of an ActRIIB:activin A complex reveal a novel binding mode for TGF-β ligand:receptor interactions, EMBO J., 22, 1555, 10.1093/emboj/cdg156

Tsukazaki, 1998, SARA, a FYVE Domain Protein that Recruits Smad2 to the TGF-β Receptor, Cell, 95, 779, 10.1016/S0092-8674(00)81701-8

Ulloa, 1999, Inhibition of transforming growth factor-β/SMAD signalling by the interferon-gamma/STAT pathway, Nature, 297, 710, 10.1038/17826

Wan, 2001, The anaphase-promoting complex mediates TGF-β signaling by targeting SnoN for destruction, Mol. Cell, 8, 1027, 10.1016/S1097-2765(01)00382-3

Wang, 2000, Ski represses bone morphogenetic protein signaling in Xenopus and mammalian cells, Proc. Natl. Acad. Sci. USA, 97, 14394, 10.1073/pnas.97.26.14394

Watanabe, 2000, Regulation of intracellular dynamics of Smad4 by its leucine-rich nuclear export signal, EMBO Rep., 1, 176, 10.1093/embo-reports/kvd029

Wicks, 2000, Inactivation of smad-transforming growth factor beta signaling by Ca(2+)-calmodulin-dependent protein kinase II, Mol. Cell. Biol., 20, 8103, 10.1128/MCB.20.21.8103-8111.2000

Wotton, 1999, A Smad transcriptional corepressor, Cell, 97, 29, 10.1016/S0092-8674(00)80712-6

Wotton, 1999, Multiple modes of repression by the Smad transcriptional corepressor TGIF, J. Biol. Chem., 274, 37105, 10.1074/jbc.274.52.37105

Wotton, 2001, The Smad transcriptional corepressor TGIF recruits mSin3, Cell Growth Differ., 12, 457

Wu, 2000, Structural basis of Smad2 recognition by the Smad anchor for receptor activation, Science, 287, 92, 10.1126/science.287.5450.92

Wu, 2001, Formation of a stable heterodimer between Smad2 and Smad4, J. Biol. Chem., 276, 20688, 10.1074/jbc.M100174200

Wu, 2001, Crystal structure of a phosphorylated Smad2, Mol. Cell, 8, 1277, 10.1016/S1097-2765(01)00421-X

Wu, 2002, Structural mechanism of Smad4 recognition by the nuclear oncoprotein Ski, Cell, 111, 357, 10.1016/S0092-8674(02)01006-1

Xiao, 2000, A distinct nuclear localization signal in the N terminus of Smad3 determines its ligand-induced nuclear translocation, Proc. Natl. Acad. Sci. USA, 97, 7853, 10.1073/pnas.97.14.7853

Xiao, 2000, Importin β mediates nuclear translocation of Smad3, J. Biol. Chem., 275, 23425, 10.1074/jbc.C000345200

Xiao, 2001, Nucleocytoplasmic shuttling of Smad1 conferred by its nuclear localization and nuclear export signal, J. Biol. Chem., 276, 39404, 10.1074/jbc.M103117200

Xiao, 2003, An extended bipartite nuclear localization signal in Smad4 is required for its nuclear import and transcriptional activity, Oncogene, 22, 1057, 10.1038/sj.onc.1206212

Xu, 2000, Smad2 nuclear import function masked by SARA and unmasked by TGFβ-dependent phosphorylation, Nat. Cell Biol., 2, 559, 10.1038/35019649

Xu, 2002, Smad2 nucleocytoplasmic shuttling by nucleoporins CAN/Nup214 and Nup153 feeds TGF-β signaling complexes in the cytoplasm and nucleus, Mol. Cell, 10, 271, 10.1016/S1097-2765(02)00586-5

Yagi, 1999, Alternatively spliced variant of Smad2 lacking exon 3, J. Biol. Chem., 274, 703, 10.1074/jbc.274.2.703

Yingling, 1997, Tumor suppressor Smad4 is a transforming growth factor β-inducible DNA binding protein, Mol. Cell. Biol., 17, 7019, 10.1128/MCB.17.12.7019

Yu, 2002, TGF-β receptor-activated p38 MAP kinase mediates Smad-independent TGF-β responses, EMBO J., 21, 3749, 10.1093/emboj/cdf366

Zawel, 1998, Human Smad3 and Smad4 are sequence-specific transcription activators, Mol. Cell, 1, 611, 10.1016/S1097-2765(00)80061-1

Zhang, 2001, Regulation of Smad degradation and activity by Smurf2, an E3 ubiquitin ligase, Proc. Natl. Acad. Sci. USA, 98, 974, 10.1073/pnas.98.3.974

Zhu, 1999, A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation, Nature, 400, 687, 10.1038/23293