Mechanisms of PrOx performance enhancement of oxygen electrodes for low and intermediate temperature solid oxide fuel cells
Tài liệu tham khảo
Masanet, 2013, Characteristics of low-carbon data centres, Nat. Clim. Chang., 3, 627, 10.1038/nclimate1786
Wachsman, 2011, Lowering the temperature of solid oxide fuel cells, Science, 334, 935, 10.1126/science.1204090
Wendel, 2016, A thermodynamic approach for selecting operating conditions in the design of reversible solid oxide cell energy systems, J. Power Sources, 301, 93, 10.1016/j.jpowsour.2015.09.093
Jensen, 2015, Large-scale electricity storage utilizing reversible solid oxide cells combined with underground storage of CO2 and CH4, Energy Environ. Sci., 8, 2471, 10.1039/C5EE01485A
Tucker, 2017, Development of high power density metal-supported solid oxide fuel cells, Energy Technol., 1
Perry Murray, 1999, A direct-methane fuel cell with a ceria-based anode, Nature, 400, 649, 10.1038/23220
Shao, 2016
Bernay, 2002, Prospects of different fuel cell technologies for vehicle applications, J. Power Sources, 108, 139, 10.1016/S0378-7753(02)00029-0
Gür, 2018, Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage, Energy Environ. Sci., 11, 2696, 10.1039/C8EE01419A
Fu, 2010, Syngas production via high-temperature steam/CO2 co-electrolysis: an economic assessment, Energy Environ. Sci., 3, 1382, 10.1039/c0ee00092b
Chen, 2014, Direct synthesis of methane from CO2-H2O co-electrolysis in tubular solid oxide electrolysis cells, Energy Environ. Sci., 7, 4018, 10.1039/C4EE02786H
Graves, 2015, Eliminating degradation in solid oxide electrochemical cells by reversible operation, Nat. Mater., 14, 239, 10.1038/nmat4165
Bierschenk, 2011, High efficiency electrical energy storage using a methane-oxygen solid oxide cell, Energy Environ. Sci., 4, 944, 10.1039/C0EE00457J
Haile, 2003, Fuel cell materials and components, Acta Mater., 51, 5981, 10.1016/j.actamat.2003.08.004
Zhu, 2006, Next generation fuel cell R&D, Int. J. Energy Res., 30, 895, 10.1002/er.1195
Gao, 2016, A perspective on low-temperature solid oxide fuel cells, Energy Environ. Sci., 9, 1602, 10.1039/C5EE03858H
Railsback, 2018, Performance and stability of La2NiO4-infiltrated La0.9Sr0.1Ga0.8Mg0.2O3 oxygen electrodes during current switched life testing, J. Power Sources, 395, 1, 10.1016/j.jpowsour.2018.05.045
Railsback, 2016, High-pressure performance of mixed-conducting oxygen electrodes: effect of interstitial versus vacancy conductivity, J. Electrochem. Soc., 163, F1433, 10.1149/2.1071613jes
Zhang, 2019, Electrochemical performance and stability of SrTi0.3Fe0.6Co0.1O3-δ infiltrated La0.8Sr0.2MnO3-Zr0.92Y0.16O2-δ oxygen electrodes for intermediate-, J. Power Sources, 426, 233, 10.1016/j.jpowsour.2019.04.044
Mamak, 2000, Self-assembling solid oxide fuel cell materials: mesoporous yttria-zirconia and metal-yttria-zirconia solid solutions, J. Am. Chem. Soc., 122, 8932, 10.1021/ja0013677
Chao, 2011, Preparation of mesoporous La0.8Sr0.2MnO3 infiltrated coatings in porous SOFC cathodes using evaporation-induced self-assembly methods, ECS Trans., 35, 2387, 10.1149/1.3570235
Wang, 2007, Methane-fueled IT-SOFCs with facile in situ inorganic templating synthesized mesoporous Sm0.2Ce0.8O1.9 as catalytic layer, J. Power Sources, 170, 251, 10.1016/j.jpowsour.2007.04.030
Ma, 2010, Samarium-doped ceria nanowires: novel synthesis and application in low-temperature solid oxide fuel cells, Adv. Mater., 22, 1640, 10.1002/adma.200903402
Railsback, 2017, Degradation of La0.6Sr0.4Fe0.8Co0.2O3-δ oxygen electrodes on Ce0.9Gd0.1O2-δ electrolytes during reversing current operation, J. Electrochem. Soc., 164, F3083, 10.1149/2.0111710jes
Wang, 2017, Sr surface segregation on La0.6Sr0.4Fe0.8Co0.2O3-δ porous solid oxide fuel cell cathodes, ECS Trans., 78, 905, 10.1149/07801.0905ecst
Wang, 2018, Degradation mechanisms of porous La0.6Sr0.4Co0.2Fe0.8O3-δ solid oxide fuel cell cathodes, J. Electrochem. Soc., 165, F564, 10.1149/2.1211807jes
Shao, 2005, A thermally self-sustained micro solid-oxide fuel-cell stack with high power density, Nature, 435, 795, 10.1038/nature03673
Shao, 2004, A high performance cathode for the next generation solid-oxide fuel cells a high-performance cathode for the next generation of solid-oxide fuel cells, Nature, 431, 170, 10.1038/nature02863
Nicholas, 2010, Measurements and modeling of Sm0.5Sr0.5CoO3-x-Ce0.9Gd0.1O1.95 SOFC cathodes produced using infiltrate solution additives, J. Electrochem. Soc., 157, B536, 10.1149/1.3284519
Call, 2016, Degradation of nano-scale cathodes: a new paradigm for selecting low-temperature solid oxide cell materials, Phys. Chem. Chem. Phys., 18, 13216, 10.1039/C6CP02590K
Zhang, 2018, Cobalt-substituted SrTi0.3Fe0.7O3−δ: a stable high-performance oxygen electrode material for intermediate-temperature solid oxide electrochemical cells, Energy Environ. Sci., 9, 1870, 10.1039/C8EE00449H
Nicollet, 2016, An innovative efficient oxygen electrode for SOFC: Pr6O11 infiltrated into Gd-doped ceria backbone, Int. J. Hydrog. Energy, 2
Dogdibegovic, 2019, High performance metal-supported solid oxide fuel cells with infiltrated electrodes, J. Power Sources, 410–411, 91, 10.1016/j.jpowsour.2018.11.004
Shrestha, 2007, Comparison of morphology and electrical conductivity of various thin films containing nano-crystalline praseodymium oxide particles, Sens. Actuators A Phys., 136, 191, 10.1016/j.sna.2006.11.019
Thangadurai, 2001, Mixed ionic-electronic conductivity in phases in the praseodymium oxide system, J. Solid State Electrochem., 5, 531, 10.1007/s100080000187
Ferro, 2011, Physicochemical and electrical properties of praseodymium oxides, Int. J. Electrochem., 1, 10.4061/2011/561204
Satoshi Okada, 2015, Rate determining step in ORR of PrOx-based film cathodes, ECS Trans., 68, 987, 10.1149/06801.0987ecst
Chen, 2017, A robust and active hybrid catalyst for facile oxygen reduction in solid oxide fuel cells accessed energy & environmental science, Energy Environ. Sci., 10, 964, 10.1039/C6EE03656B
Jiang, 2019, Development of lanthanum strontium cobalt ferrite perovskite electrodes of solid oxide fuel cells – a review, Int. J. Hydrog. Energy, 1
Adler, 2004, Factors governing oxygen reduction in solid oxide fuel cell cathodes, Chem. Rev., 104, 4791, 10.1021/cr020724o
Nielsen, 2018, Towards high power density metal supported solid oxide fuel cell for mobile applications, J. Electrochem. Soc., 165, F90, 10.1149/2.0741802jes
Jacobsen, 2008, Diffusion and conversion impedance in solid oxide fuel cells, Electrochim. Acta, 53, 7500, 10.1016/j.electacta.2008.02.019
Huang, 2016, Reaction kinetics of gas-solid exchange using gas phase isotopic oxygen exchange, ACS Catal., 6, 6025, 10.1021/acscatal.6b01462
Kan, 2010, Isotopic-switching analysis of oxygen reduction in solid oxide fuel cell cathode materials, Solid State Ion., 181, 338, 10.1016/j.ssi.2009.12.011
Saher, 2017, Influence of ionic conductivity of the nano-particulate coating phase on oxygen surface exchange of La0.58Sr0.4Co0.2Fe0.8O3−δ, J. Mater. Chem. A, 5, 4991, 10.1039/C6TA10954C
Jung, 2011, A new model describing solid oxide fuel cell cathode kinetics: model thin film SrTi1-xFexO3-δ mixed conducting oxides – a case study, Adv. Energy Mater., 1, 1184, 10.1002/aenm.201100164
Nielsen, 2014, Impedance of SOFC electrodes: a review and a comprehensive case study on the impedance of LSM:YSZ cathodes, Electrochim. Acta, 115, 31, 10.1016/j.electacta.2013.10.053
Simrick, 2012, An investigation of the oxygen reduction reaction mechanism of La0.6Sr0.4Co0.2Fe0.8O3 using patterned thin films, Solid State Ion., 206, 7, 10.1016/j.ssi.2011.10.029
Marinha, 2011, Microstructural 3D reconstruction and performance evaluation of LSCF cathodes obtained by electrostatic spray deposition, Chem. Mater., 23, 5340, 10.1021/cm2016998
de Levie, 1964, On porous electrodes, Electrochim. Acta, 9, 1231, 10.1016/0013-4686(64)85015-5
Scipioni, 2017, A physically-based equivalent circuit model for the impedance of a LiFePO4/graphite 26650 cylindrical cell, J. Electrochem. Soc., 164, A2017, 10.1149/2.1071709jes
Meyers, 2000, The impedance response of a porous electrode composed of intercalation particles, J. Electrochem. Soc., 147, 2930, 10.1149/1.1393627
Chen, 2012, Impact of Sr segregation on the electronic structure and oxygen reduction activity of SrTi1-xFexO3 surfaces, Energy Environ. Sci., 5, 7979, 10.1039/c2ee21463f
Wang, 2006, A mechanistic study on the activation process of (La,Sr)MnO3 electrodes of solid oxide fuel cells, Solid State Ion., 177, 1361, 10.1016/j.ssi.2006.05.022
Cai, 2012, Chemical heterogeneities on La0.6Sr0.4CoO3−δ thin films—correlations to cathode surface activity and stability, Chem. Mater., 24, 1116, 10.1021/cm203501u
Baumann, 2005, Strong performance improvement of La0.6Sr0.4Co0.8Fe0.2O3−δ SOFC cathodes by electrochemical activation, J. Electrochem. Soc., 152, A2074, 10.1149/1.2034529
Jung, 2012, Investigation of surface Sr segregation in model thin film solid oxide fuel cell perovskite electrodes, Energy Environ. Sci., 5, 5370, 10.1039/C1EE02762J
Lu, 2019, Stable high current density operation of La0.6Sr0.4Co0.2Fe0.8O3-δ oxygen electrodes, J. Mater. Chem. A, 7, 13531, 10.1039/C9TA04020J
Wen, 2018, Temporal and thermal evolutions of surface Sr-segregation in pristine and atomic layer deposition modified La0.6Sr0.4CoO3−δ epitaxial films, J. Mater. Chem. A, 6, 24378, 10.1039/C8TA08355J
Opitz, 2018, The chemical evolution of the La0.6Sr0.4CoO3−δ surface under SOFC operating conditions and its implications for electrochemical oxygen exchange activity, Top. Catal., 61, 2129, 10.1007/s11244-018-1068-1
Joo, 2011, Effects of water on oxygen surface exchange and degradation of mixed conducting perovskites, J. Power Sources, 196, 7495, 10.1016/j.jpowsour.2011.04.032
Jain, 2013, A materials genome approach to accelerating materials innovation, APL Mater., 1, 10.1063/1.4812323
Apergis, 2017, The role of rare earth prices in renewable energy consumption: the actual driver for a renewable energy world, Energy Econ., 62, 33, 10.1016/j.eneco.2016.12.015
Sverdrup, 2016, A system dynamics model for platinum group metal supply, market price, depletion of extractable amounts, ore grade, recycling and stocks-in-use, Resour. Conserv. Recycl., 114, 130, 10.1016/j.resconrec.2016.07.011
Ivers-Tiffée, 2017, Evaluation of electrochemical impedance spectra by the distribution of relaxation times, J. Ceram. Soc. Jpn., 125, 193, 10.2109/jcersj2.16267
Illig, 2012, Separation of charge transfer and contact resistance in LiFePO4-cathodes by impedance modeling, J. Electrochem. Soc., 159, A952, 10.1149/2.030207jes
Graves, 2012
Hunter, 2007, Matplotlib: a 2d graphics environment, Sci. Program., 90
Van Der Walt, 2011, The NumPy array: a structure for efficient numerical computation, Comput. Sci. Eng., 13, 22, 10.1109/MCSE.2011.37
Jones, 2001