Mechanisms of PrOx performance enhancement of oxygen electrodes for low and intermediate temperature solid oxide fuel cells

Materials Today Energy - Tập 14 - Trang 100362 - 2019
Matthew Y. Lu1, Roberto Scipioni1, Beom-Kyeong Park1, Tianrang Yang1, Yvonne A. Chart1, Scott A. Barnett1
1Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA

Tài liệu tham khảo

Masanet, 2013, Characteristics of low-carbon data centres, Nat. Clim. Chang., 3, 627, 10.1038/nclimate1786 Wachsman, 2011, Lowering the temperature of solid oxide fuel cells, Science, 334, 935, 10.1126/science.1204090 Wendel, 2016, A thermodynamic approach for selecting operating conditions in the design of reversible solid oxide cell energy systems, J. Power Sources, 301, 93, 10.1016/j.jpowsour.2015.09.093 Jensen, 2015, Large-scale electricity storage utilizing reversible solid oxide cells combined with underground storage of CO2 and CH4, Energy Environ. Sci., 8, 2471, 10.1039/C5EE01485A Tucker, 2017, Development of high power density metal-supported solid oxide fuel cells, Energy Technol., 1 Perry Murray, 1999, A direct-methane fuel cell with a ceria-based anode, Nature, 400, 649, 10.1038/23220 Shao, 2016 Bernay, 2002, Prospects of different fuel cell technologies for vehicle applications, J. Power Sources, 108, 139, 10.1016/S0378-7753(02)00029-0 Gür, 2018, Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage, Energy Environ. Sci., 11, 2696, 10.1039/C8EE01419A Fu, 2010, Syngas production via high-temperature steam/CO2 co-electrolysis: an economic assessment, Energy Environ. Sci., 3, 1382, 10.1039/c0ee00092b Chen, 2014, Direct synthesis of methane from CO2-H2O co-electrolysis in tubular solid oxide electrolysis cells, Energy Environ. Sci., 7, 4018, 10.1039/C4EE02786H Graves, 2015, Eliminating degradation in solid oxide electrochemical cells by reversible operation, Nat. Mater., 14, 239, 10.1038/nmat4165 Bierschenk, 2011, High efficiency electrical energy storage using a methane-oxygen solid oxide cell, Energy Environ. Sci., 4, 944, 10.1039/C0EE00457J Haile, 2003, Fuel cell materials and components, Acta Mater., 51, 5981, 10.1016/j.actamat.2003.08.004 Zhu, 2006, Next generation fuel cell R&D, Int. J. Energy Res., 30, 895, 10.1002/er.1195 Gao, 2016, A perspective on low-temperature solid oxide fuel cells, Energy Environ. Sci., 9, 1602, 10.1039/C5EE03858H Railsback, 2018, Performance and stability of La2NiO4-infiltrated La0.9Sr0.1Ga0.8Mg0.2O3 oxygen electrodes during current switched life testing, J. Power Sources, 395, 1, 10.1016/j.jpowsour.2018.05.045 Railsback, 2016, High-pressure performance of mixed-conducting oxygen electrodes: effect of interstitial versus vacancy conductivity, J. Electrochem. Soc., 163, F1433, 10.1149/2.1071613jes Zhang, 2019, Electrochemical performance and stability of SrTi0.3Fe0.6Co0.1O3-δ infiltrated La0.8Sr0.2MnO3-Zr0.92Y0.16O2-δ oxygen electrodes for intermediate-, J. Power Sources, 426, 233, 10.1016/j.jpowsour.2019.04.044 Mamak, 2000, Self-assembling solid oxide fuel cell materials: mesoporous yttria-zirconia and metal-yttria-zirconia solid solutions, J. Am. Chem. Soc., 122, 8932, 10.1021/ja0013677 Chao, 2011, Preparation of mesoporous La0.8Sr0.2MnO3 infiltrated coatings in porous SOFC cathodes using evaporation-induced self-assembly methods, ECS Trans., 35, 2387, 10.1149/1.3570235 Wang, 2007, Methane-fueled IT-SOFCs with facile in situ inorganic templating synthesized mesoporous Sm0.2Ce0.8O1.9 as catalytic layer, J. Power Sources, 170, 251, 10.1016/j.jpowsour.2007.04.030 Ma, 2010, Samarium-doped ceria nanowires: novel synthesis and application in low-temperature solid oxide fuel cells, Adv. Mater., 22, 1640, 10.1002/adma.200903402 Railsback, 2017, Degradation of La0.6Sr0.4Fe0.8Co0.2O3-δ oxygen electrodes on Ce0.9Gd0.1O2-δ electrolytes during reversing current operation, J. Electrochem. Soc., 164, F3083, 10.1149/2.0111710jes Wang, 2017, Sr surface segregation on La0.6Sr0.4Fe0.8Co0.2O3-δ porous solid oxide fuel cell cathodes, ECS Trans., 78, 905, 10.1149/07801.0905ecst Wang, 2018, Degradation mechanisms of porous La0.6Sr0.4Co0.2Fe0.8O3-δ solid oxide fuel cell cathodes, J. Electrochem. Soc., 165, F564, 10.1149/2.1211807jes Shao, 2005, A thermally self-sustained micro solid-oxide fuel-cell stack with high power density, Nature, 435, 795, 10.1038/nature03673 Shao, 2004, A high performance cathode for the next generation solid-oxide fuel cells a high-performance cathode for the next generation of solid-oxide fuel cells, Nature, 431, 170, 10.1038/nature02863 Nicholas, 2010, Measurements and modeling of Sm0.5Sr0.5CoO3-x-Ce0.9Gd0.1O1.95 SOFC cathodes produced using infiltrate solution additives, J. Electrochem. Soc., 157, B536, 10.1149/1.3284519 Call, 2016, Degradation of nano-scale cathodes: a new paradigm for selecting low-temperature solid oxide cell materials, Phys. Chem. Chem. Phys., 18, 13216, 10.1039/C6CP02590K Zhang, 2018, Cobalt-substituted SrTi0.3Fe0.7O3−δ: a stable high-performance oxygen electrode material for intermediate-temperature solid oxide electrochemical cells, Energy Environ. Sci., 9, 1870, 10.1039/C8EE00449H Nicollet, 2016, An innovative efficient oxygen electrode for SOFC: Pr6O11 infiltrated into Gd-doped ceria backbone, Int. J. Hydrog. Energy, 2 Dogdibegovic, 2019, High performance metal-supported solid oxide fuel cells with infiltrated electrodes, J. Power Sources, 410–411, 91, 10.1016/j.jpowsour.2018.11.004 Shrestha, 2007, Comparison of morphology and electrical conductivity of various thin films containing nano-crystalline praseodymium oxide particles, Sens. Actuators A Phys., 136, 191, 10.1016/j.sna.2006.11.019 Thangadurai, 2001, Mixed ionic-electronic conductivity in phases in the praseodymium oxide system, J. Solid State Electrochem., 5, 531, 10.1007/s100080000187 Ferro, 2011, Physicochemical and electrical properties of praseodymium oxides, Int. J. Electrochem., 1, 10.4061/2011/561204 Satoshi Okada, 2015, Rate determining step in ORR of PrOx-based film cathodes, ECS Trans., 68, 987, 10.1149/06801.0987ecst Chen, 2017, A robust and active hybrid catalyst for facile oxygen reduction in solid oxide fuel cells accessed energy & environmental science, Energy Environ. Sci., 10, 964, 10.1039/C6EE03656B Jiang, 2019, Development of lanthanum strontium cobalt ferrite perovskite electrodes of solid oxide fuel cells – a review, Int. J. Hydrog. Energy, 1 Adler, 2004, Factors governing oxygen reduction in solid oxide fuel cell cathodes, Chem. Rev., 104, 4791, 10.1021/cr020724o Nielsen, 2018, Towards high power density metal supported solid oxide fuel cell for mobile applications, J. Electrochem. Soc., 165, F90, 10.1149/2.0741802jes Jacobsen, 2008, Diffusion and conversion impedance in solid oxide fuel cells, Electrochim. Acta, 53, 7500, 10.1016/j.electacta.2008.02.019 Huang, 2016, Reaction kinetics of gas-solid exchange using gas phase isotopic oxygen exchange, ACS Catal., 6, 6025, 10.1021/acscatal.6b01462 Kan, 2010, Isotopic-switching analysis of oxygen reduction in solid oxide fuel cell cathode materials, Solid State Ion., 181, 338, 10.1016/j.ssi.2009.12.011 Saher, 2017, Influence of ionic conductivity of the nano-particulate coating phase on oxygen surface exchange of La0.58Sr0.4Co0.2Fe0.8O3−δ, J. Mater. Chem. A, 5, 4991, 10.1039/C6TA10954C Jung, 2011, A new model describing solid oxide fuel cell cathode kinetics: model thin film SrTi1-xFexO3-δ mixed conducting oxides – a case study, Adv. Energy Mater., 1, 1184, 10.1002/aenm.201100164 Nielsen, 2014, Impedance of SOFC electrodes: a review and a comprehensive case study on the impedance of LSM:YSZ cathodes, Electrochim. Acta, 115, 31, 10.1016/j.electacta.2013.10.053 Simrick, 2012, An investigation of the oxygen reduction reaction mechanism of La0.6Sr0.4Co0.2Fe0.8O3 using patterned thin films, Solid State Ion., 206, 7, 10.1016/j.ssi.2011.10.029 Marinha, 2011, Microstructural 3D reconstruction and performance evaluation of LSCF cathodes obtained by electrostatic spray deposition, Chem. Mater., 23, 5340, 10.1021/cm2016998 de Levie, 1964, On porous electrodes, Electrochim. Acta, 9, 1231, 10.1016/0013-4686(64)85015-5 Scipioni, 2017, A physically-based equivalent circuit model for the impedance of a LiFePO4/graphite 26650 cylindrical cell, J. Electrochem. Soc., 164, A2017, 10.1149/2.1071709jes Meyers, 2000, The impedance response of a porous electrode composed of intercalation particles, J. Electrochem. Soc., 147, 2930, 10.1149/1.1393627 Chen, 2012, Impact of Sr segregation on the electronic structure and oxygen reduction activity of SrTi1-xFexO3 surfaces, Energy Environ. Sci., 5, 7979, 10.1039/c2ee21463f Wang, 2006, A mechanistic study on the activation process of (La,Sr)MnO3 electrodes of solid oxide fuel cells, Solid State Ion., 177, 1361, 10.1016/j.ssi.2006.05.022 Cai, 2012, Chemical heterogeneities on La0.6Sr0.4CoO3−δ thin films—correlations to cathode surface activity and stability, Chem. Mater., 24, 1116, 10.1021/cm203501u Baumann, 2005, Strong performance improvement of La0.6Sr0.4Co0.8Fe0.2O3−δ SOFC cathodes by electrochemical activation, J. Electrochem. Soc., 152, A2074, 10.1149/1.2034529 Jung, 2012, Investigation of surface Sr segregation in model thin film solid oxide fuel cell perovskite electrodes, Energy Environ. Sci., 5, 5370, 10.1039/C1EE02762J Lu, 2019, Stable high current density operation of La0.6Sr0.4Co0.2Fe0.8O3-δ oxygen electrodes, J. Mater. Chem. A, 7, 13531, 10.1039/C9TA04020J Wen, 2018, Temporal and thermal evolutions of surface Sr-segregation in pristine and atomic layer deposition modified La0.6Sr0.4CoO3−δ epitaxial films, J. Mater. Chem. A, 6, 24378, 10.1039/C8TA08355J Opitz, 2018, The chemical evolution of the La0.6Sr0.4CoO3−δ surface under SOFC operating conditions and its implications for electrochemical oxygen exchange activity, Top. Catal., 61, 2129, 10.1007/s11244-018-1068-1 Joo, 2011, Effects of water on oxygen surface exchange and degradation of mixed conducting perovskites, J. Power Sources, 196, 7495, 10.1016/j.jpowsour.2011.04.032 Jain, 2013, A materials genome approach to accelerating materials innovation, APL Mater., 1, 10.1063/1.4812323 Apergis, 2017, The role of rare earth prices in renewable energy consumption: the actual driver for a renewable energy world, Energy Econ., 62, 33, 10.1016/j.eneco.2016.12.015 Sverdrup, 2016, A system dynamics model for platinum group metal supply, market price, depletion of extractable amounts, ore grade, recycling and stocks-in-use, Resour. Conserv. Recycl., 114, 130, 10.1016/j.resconrec.2016.07.011 Ivers-Tiffée, 2017, Evaluation of electrochemical impedance spectra by the distribution of relaxation times, J. Ceram. Soc. Jpn., 125, 193, 10.2109/jcersj2.16267 Illig, 2012, Separation of charge transfer and contact resistance in LiFePO4-cathodes by impedance modeling, J. Electrochem. Soc., 159, A952, 10.1149/2.030207jes Graves, 2012 Hunter, 2007, Matplotlib: a 2d graphics environment, Sci. Program., 90 Van Der Walt, 2011, The NumPy array: a structure for efficient numerical computation, Comput. Sci. Eng., 13, 22, 10.1109/MCSE.2011.37 Jones, 2001