Mechanisms for copper acquisition, distribution and regulation

Nature Chemical Biology - Tập 4 Số 3 - Trang 176-185 - 2008
Byung‐Eun Kim1, Tracy Nevitt2, Dennis J. Thiele2
1Department of Pharmacology and Cancer Biology, Duke University Medical Center, Research Drive, Levine Science Research Center, C351, Durham, North Carolina 27710, USA.
2Department of Pharmacology and Cancer Biology, Duke University Medical Center, Research Drive, Levine Science Research Center, C351, Durham, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Linder, M.C. & Goode, C.A. Biochemistry of Copper 1–413 (Springer-Verlag New York, LLC, New York, 1991).

Bertini, I., Gray, H.B., Stiefel, E. & Valentine, J.S. Biological Inorganic Chemistry 1–712 (Sausalito, California, USA, 2007).

Lippard, S.J. & Berg, J.M. Principles of Bioinorganic Chemistry 3–388 (University Science Books, Mill Valley, California, USA, 1994).

Andreini, C., Banci, L., Bertini, I. & Rosato, A. Occurrence of copper proteins through the three domains of life: a bioinformatic approach. J. Proteome Res. 7, 209–216 (2008).

Hellman, N.E. & Gitlin, J.D. Ceruloplasmin metabolism and function. Annu. Rev. Nutr. 22, 439–458 (2002).

Harris, Z.L., Durley, A.P., Man, T.K. & Gitlin, J.D. Targeted gene disruption reveals an essential role for ceruloplasmin in cellular iron efflux. Proc. Natl. Acad. Sci. USA 96, 10812–10817 (1999).

Madsen, E. & Gitlin, J.D. Copper and iron disorders of the brain. Annu. Rev. Neurosci. 30, 317–337 (2007).

Adlard, P.A. & Bush, A.I. Metals and Alzheimer's disease. J. Alzheimers Dis. 10, 145–163 (2006).

Strozyk, D. et al. Zinc and copper modulate Alzheimer Aβ levels in human cerebrospinal fluid. Neurobiol. Aging published online, doi:10:1016/j.neurobiolaging.2007.10.012 (10 December 2007).

Bharathi, Indi, S.S. & Rao, K.S. Copper- and iron-induced differential fibril formation in alpha-synuclein: TEM study. Neurosci. Lett. 424, 78–82 (2007).

Jones, C.E., Abdelraheim, S.R., Brown, D.R. & Viles, J.H. Preferential Cu2+ coordination by His96 and His111 induces beta-sheet formation in the unstructured amyloidogenic region of the prion protein. J. Biol. Chem. 279, 32018–32027 (2004).

Nose, Y., Rees, E.M. & Thiele, D.J. Structure of the Ctr1 copper trans'PORE'ter reveals novel architecture. Trends Biochem. Sci. 31, 604–607 (2006).

Puig, S. & Thiele, D.J. Molecular mechanisms of copper uptake and distribution. Curr. Opin. Chem. Biol. 6, 171–180 (2002).

Maryon, E.B., Molloy, S.A., Zimnicka, A.M. & Kaplan, J.H. Copper entry into human cells: progress and unanswered questions. Biometals 20, 355–364 (2007).

Puig, S., Lee, J., Lau, M. & Thiele, D.J. Biochemical and genetic analyses of yeast and human high affinity copper transporters suggest a conserved mechanism for copper uptake. J. Biol. Chem. 277, 26021–26030 (2002).

Nose, Y., Kim, B.E. & Thiele, D.J. Ctr1 drives intestinal copper absorption and is essential for growth, iron metabolism, and neonatal cardiac function. Cell Metab. 4, 235–244 (2006).

Dancis, A. et al. Molecular characterization of a copper transport protein in S. cerevisiae: an unexpected role for copper in iron transport. Cell 76, 393–402 (1994).

Pena, M.M., Puig, S. & Thiele, D.J. Characterization of the Saccharomyces cerevisiae high affinity copper transporter Ctr3. J. Biol. Chem. 275, 33244–33251 (2000).

Aller, S.G. & Unger, V.M. Projection structure of the human copper transporter CTR1 at 6-A resolution reveals a compact trimer with a novel channel-like architecture. Proc. Natl. Acad. Sci. USA 103, 3627–3632 (2006).

Rees, E.M. & Thiele, D.J. Identification of a vacuole-associated metalloreductase and its role in Ctr2-mediated intracellular copper mobilization. J. Biol. Chem. 282, 21629–21638 (2007).

Lee, J., Petris, M.J. & Thiele, D.J. Characterization of mouse embryonic cells deficient in the ctr1 high affinity copper transporter. Identification of a Ctr1-independent copper transport system. J. Biol. Chem. 277, 40253–40259 (2002).

Ohgami, R.S., Campagna, D.R., McDonald, A. & Fleming, M.D. The Steap proteins are metalloreductases. Blood 108, 1388–1394 (2006).

McKie, A.T. et al. An iron-regulated ferric reductase associated with the absorption of dietary iron. Science 291, 1755–1759 (2001).

Petris, M.J., Smith, K., Lee, J. & Thiele, D.J. Copper-stimulated endocytosis and degradation of the human copper transporter, hCtr1. J. Biol. Chem. 278, 9639–9646 (2003).

Klomp, A.E., Tops, B.B., Van Denberg, I.E., Berger, R. & Klomp, L.W. Biochemical characterization and subcellular localization of human copper transporter 1 (hCTR1). Biochem. J. 364, 497–505 (2002).

Kuo, Y.M., Gybina, A.A., Pyatskowit, J.W., Gitschier, J. & Prohaska, J.R. Copper transport protein (Ctr1) levels in mice are tissue specific and dependent on copper status. J. Nutr. 136, 21–26 (2006).

Guo, Y., Smith, K., Lee, J., Thiele, D.J. & Petris, M.J. Identification of methionine-rich clusters that regulate copper-stimulated endocytosis of the human Ctr1 copper transporter. J. Biol. Chem. 279, 17428–17433 (2004).

Fleming, M.D. et al. Nramp2 is mutated in the anemic Belgrade (b) rat: evidence of a role for Nramp2 in endosomal iron transport. Proc. Natl. Acad. Sci. USA 95, 1148–1153 (1998).

Zimnicka, A.M., Maryon, E.B. & Kaplan, J.H. Human copper transporter hCTR1 mediates basolateral uptake of copper into enterocytes: implications for copper homeostasis. J. Biol. Chem. 282, 26471–26480 (2007).

Lee, J., Prohaska, J.R. & Thiele, D.J. Essential role for mammalian copper transporter Ctr1 in copper homeostasis and embryonic development. Proc. Natl. Acad. Sci. USA 98, 6842–6847 (2001).

Kuo, Y.M., Zhou, B., Cosco, D. & Gitschier, J. The copper transporter CTR1 provides an essential function in mammalian embryonic development. Proc. Natl. Acad. Sci. USA 98, 6836–6841 (2001).

Portnoy, M.E., Schmidt, P.J., Rogers, R.S. & Culotta, V.C. Metal transporters that contribute copper to metallochaperones in Saccharomyces cerevisiae. Mol. Genet. Genomics 265, 873–882 (2001).

Rees, E.M., Lee, J. & Thiele, D.J. Mobilization of intracellular copper stores by the ctr2 vacuolar copper transporter. J. Biol. Chem. 279, 54221–54229 (2004).

Bellemare, D.R. et al. Ctr6, a vacuolar membrane copper transporter in Schizosaccharomyces pombe. J. Biol. Chem. 277, 46676–46686 (2002).

Kampfenkel, K., Kushnir, S., Babiychuk, E., Inze, D. & Van Montagu, M. Molecular characterization of a putative Arabidopsis thaliana copper transporter and its yeast homologue. J. Biol. Chem. 270, 28479–28486 (1995).

Zhou, B. & Gitschier, J. hCTR1: a human gene for copper uptake identified by complementation in yeast. Proc. Natl. Acad. Sci. USA 94, 7481–7486 (1997).

van den Berghe, P.V. et al. Human copper transporter 2 is localized in late endosomes and lysosomes and facilitates cellular copper uptake. Biochem. J. 407, 49–59 (2007).

Bertinato, J., Swist, E., Plouffe, L.J., Brooks, S.P. & L'Abbé, M.R. Ctr2 is partially localized to the plasma membrane and stimulates copper uptake in COS-7 cells. Biochem. J. 409, 731–740 (2008).

Cobine, P.A., Ojeda, L.D., Rigby, K.M. & Winge, D.R. Yeast contain a non-proteinaceous pool of copper in the mitochondrial matrix. J. Biol. Chem. 279, 14447–14455 (2004).

Glerum, D.M., Shtanko, A. & Tzagoloff, A. Characterization of COX17, a yeast gene involved in copper metabolism and assembly of cytochrome oxidase. J. Biol. Chem. 271, 14504–14509 (1996).

Abajian, C., Yatsunyk, L.A., Ramirez, B.E. & Rosenzweig, A.C. Yeast cox17 solution structure and copper(I) binding. J. Biol. Chem. 279, 53584–53592 (2004).

Arnesano, F., Balatri, E., Banci, L., Bertini, I. & Winge, D.R. Folding studies of Cox17 reveal an important interplay of cysteine oxidation and copper binding. Structure 13, 713–722 (2005).

Cobine, P.A., Pierrel, F., Bestwick, M.L. & Winge, D.R. Mitochondrial matrix copper complex used in metallation of cytochrome oxidase and superoxide dismutase. J. Biol. Chem. 281, 36552–36559 (2006).

Horng, Y.C., Cobine, P.A., Maxfield, A.B., Carr, H.S. & Winge, D.R. Specific copper transfer from the Cox17 metallochaperone to both Sco1 and Cox11 in the assembly of yeast cytochrome C oxidase. J. Biol. Chem. 279, 35334–35340 (2004).

Leary, S.C. et al. Human SCO1 and SCO2 have independent, cooperative functions in copper delivery to cytochrome c oxidase. Hum. Mol. Genet. 13, 1839–1848 (2004).

Rigby, K., Zhang, L., Cobine, P.A., George, G.N. & Winge, D.R. characterization of the cytochrome c oxidase assembly factor Cox19 of Saccharomyces cerevisiae. J. Biol. Chem. 282, 10233–10242 (2007).

Cobine, P.A., Pierrel, F. & Winge, D.R. Copper trafficking to the mitochondrion and assembly of copper metalloenzymes. Biochim. Biophys. Acta 1763, 759–772 (2006).

Wernimont, A.K., Huffman, D.L., Lamb, A.L., O'Halloran, T.V. & Rosenzweig, A.C. Structural basis for copper transfer by the metallochaperone for the Menkes/Wilson disease proteins. Nat. Struct. Biol. 7, 766–771 (2000).

Anastassopoulou, I. et al. Solution structure of the apo and copper(I)-loaded human metallochaperone HAH1. Biochemistry 43, 13046–13053 (2004).

Pufahl, R.A. et al. Metal ion chaperone function of the soluble Cu(I) receptor Atx1. Science 278, 853–856 (1997).

Banci, L., Bertini, I., Chasapis, C.T., Rosato, A. & Tenori, L. Interaction of the two soluble metal-binding domains of yeast Ccc2 with copper(I)-Atx1. Biochem. Biophys. Res. Commun. 364, 645–649 (2007).

Lutsenko, S., LeShane, E.S. & Shinde, U. Biochemical basis of regulation of human copper-transporting ATPases. Arch. Biochem. Biophys. 463, 134–148 (2007).

Linz, R. et al. Intracellular targeting of copper-transporting ATPase ATP7A in a normal and Atp7b−/− kidney. Am. J. Physiol. Renal Physiol. 294, F53–F61 (2008).

La Fontaine, S. & Mercer, J.F. Trafficking of the copper-ATPase ATP7A and ATP7B: role in copper homeostasis. Arch. Biochem. Biophys. 463, 149–167 (2007).

Huster, D. et al. Consequences of copper accumulation in the livers of the Atp7b−/− (Wilson disease gene) knockout mice. Am. J. Pathol. 168, 423–434 (2006).

Hamza, I., Prohaska, J. & Gitlin, J.D. Essential role for Atox1 in the copper-mediated intracellular trafficking of the Menkes ATPase. Proc. Natl. Acad. Sci. USA 100, 1215–1220 (2003).

Hellman, N.E. et al. Mechanisms of copper incorporation into human ceruloplasmin. J. Biol. Chem. 277, 46632–46638 (2002).

De Freitas, J.M., Liba, A., Meneghini, R., Valentine, J.S. & Gralla, E.B. Yeast lacking Cu-Zn superoxide dismutase show altered iron homeostasis. Role of oxidative stress in iron metabolism. J. Biol. Chem. 275, 11645–11649 (2000).

Knight, S.A., Labbe, S., Kwon, L.F., Kosman, D.J. & Thiele, D.J. A widespread transposable element masks expression of a yeast copper transport gene. Genes Dev. 10, 1917–1929 (1996).

Gralla, E.B. & Valentine, J.S. Null mutants of Saccharomyces cerevisiae Cu,Zn superoxide dismutase: characterization and spontaneous mutation rates. J. Bacteriol. 173, 5918–5920 (1991).

Elchuri, S. et al. CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life. Oncogene 24, 367–380 (2005).

Furukawa, Y. & O'Halloran, T.V. Amyotrophic lateral sclerosis mutations have the greatest destabilizing effect on the apo- and reduced form of SOD1, leading to unfolding and oxidative aggregation. J. Biol. Chem. 280, 17266–17274 (2005).

Furukawa, Y., Torres, A.S. & O'Halloran, T.V. Oxygen-induced maturation of SOD1: a key role for disulfide formation by the copper chaperone CCS. EMBO J. 23, 2872–2881 (2004).

Lamb, A.L., Torres, A.S., O'Halloran, T.V. & Rosenzweig, A.C. Heterodimeric structure of superoxide dismutase in complex with its metallochaperone. Nat. Struct. Biol. 8, 751–755 (2001).

Field, L.S., Furukawa, Y., O'Halloran, T.V. & Culotta, V.C. Factors controlling the uptake of yeast copper/zinc superoxide dismutase into mitochondria. J. Biol. Chem. 278, 28052–28059 (2003).

Okado-Matsumoto, A. & Fridovich, I. Subcellular distribution of superoxide dismutases (SOD) in rat liver: Cu,Zn-SOD in mitochondria. J. Biol. Chem. 276, 38388–38393 (2001).

Sturtz, L.A., Diekert, K., Jensen, L.T., Lill, R. & Culotta, V.C. A fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. A physiological role for SOD1 in guarding against mitochondrial oxidative damage. J. Biol. Chem. 276, 38084–38089 (2001).

Corson, L.B., Strain, J.J., Culotta, V.C. & Cleveland, D.W. Chaperone-facilitated copper binding is a property common to several classes of familial amyotrophic lateral sclerosis-linked superoxide dismutase mutants. Proc. Natl. Acad. Sci. USA 95, 6361–6366 (1998).

Wong, P.C. et al. Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/Zn superoxide dismutase. Proc. Natl. Acad. Sci. USA 97, 2886–2891 (2000).

Jensen, L.T. & Culotta, V.C. Activation of CuZn superoxide dismutases from Caenorhabditis elegans does not require the copper chaperone CCS. J. Biol. Chem. 280, 41373–41379 (2005).

Carroll, M.C. et al. Mechanisms for activating Cu- and Zn-containing superoxide dismutase in the absence of the CCS Cu chaperone. Proc. Natl. Acad. Sci. USA 101, 5964–5969 (2004).

Carroll, M.C. et al. The effects of glutaredoxin and copper activation pathways on the disulfide and stability of Cu,Zn superoxide dismutase. J. Biol. Chem. 281, 28648–28656 (2006).

Jeney, V. et al. Role of antioxidant-1 in extracellular superoxide dismutase function and expression. Circ. Res. 96, 723–729 (2005).

Qin, Z., Itoh, S., Jeney, V., Ushio-Fukai, M. & Fukai, T. Essential role for the Menkes ATPase in activation of extracellular superoxide dismutase: implication for vascular oxidative stress. FASEB J. 20, 334–336 (2006).

Balamurugan, K. & Schaffner, W. Copper homeostasis in eukaryotes: teetering on a tightrope. Biochim. Biophys. Acta 1763, 737–746 (2006).

Bird, A.J. Metallosensors, the ups and downs of gene regulation. Adv. Microb. Physiol. 53, 231–267 (2008).

Bertinato, J. & L'Abbe, M.R. Copper modulates the degradation of copper chaperone for Cu,Zn superoxide dismutase by the 26 S proteosome. J. Biol. Chem. 278, 35071–35078 (2003).

West, E.C. & Prohaska, J.R. Cu,Zn-superoxide dismutase is lower and copper chaperone CCS is higher in erythrocytes of copper-deficient rats and mice. Exp. Biol. Med. (Maywood) 229, 756–764 (2004).

Lamb, A.L. et al. Crystal structure of the copper chaperone for superoxide dismutase. Nat. Struct. Biol. 6, 724–729 (1999).

Caruano-Yzermans, A.L., Bartnikas, T.B. & Gitlin, J.D. Mechanisms of the copper-dependent turnover of the copper chaperone for superoxide dismutase. J. Biol. Chem. 281, 13581–13587 (2006).

Schmidt, P.J., Kunst, C. & Culotta, V.C. Copper activation of superoxide dismutase 1 (SOD1) in vivo. Role for protein-protein interactions with the copper chaperone for SOD1. J. Biol. Chem. 275, 33771–33776 (2000).

Brown, N.M., Torres, A.S., Doan, P.E. & O'Halloran, T.V. Oxygen and the copper chaperone CCS regulate posttranslational activation of Cu,Zn superoxide dismutase. Proc. Natl. Acad. Sci. USA 101, 5518–5523 (2004).

Lamb, A.L., Wernimont, A.K., Pufahl, R.A., O'Halloran, T.V. & Rosenzweig, A.C. Crystal structure of the second domain of the human copper chaperone for superoxide dismutase. Biochemistry 39, 1589–1595 (2000).

Nittis, T. & Gitlin, J.D. Role of copper in the proteosome-mediated degradation of the multicopper oxidase hephaestin. J. Biol. Chem. 279, 25696–25702 (2004).

Sazinsky, M.H. et al. Characterization and structure of a Zn2+ and [2Fe-2S]-containing copper chaperone from Archaeoglobus fulgidus. J. Biol. Chem. 282, 25950–25959 (2007).

Schaible, U.E. & Kaufmann, S.H. Iron and microbial infection. Nat. Rev. Microbiol. 2, 946–953 (2004).

Prentice, A.M., Ghattas, H. & Cox, S.E. Host-pathogen interactions: can micronutrients tip the balance? J. Nutr. 137, 1334–1337 (2007).

Doherty, C.P. Host-pathogen interactions: the role of iron. J. Nutr. 137, 1341–1344 (2007).

Jung, W.H., Sham, A., White, R. & Kronstad, J.W. Iron regulation of the major virulence factors in the AIDS-associated pathogen Cryptococcus neoformans. PLoS Biol. 4, e410 (2006).

Lin, X. & Heitman, J. The biology of the Cryptococcus neoformans species complex. Annu. Rev. Microbiol. 60, 69–105 (2006).

Fan, W., Kraus, P.R., Boily, M.J. & Heitman, J. Cryptococcus neoformans gene expression during murine macrophage infection. Eukaryot. Cell 4, 1420–1433 (2005).

Feldmesser, M., Kress, Y., Novikoff, P. & Casadevall, A. Cryptococcus neoformans is a facultative intracellular pathogen in murine pulmonary infection. Infect. Immun. 68, 4225–4237 (2000).

Waterman, S.R. et al. Role of a CUF1/CTR4 copper regulatory axis in the virulence of Cryptococcus neoformans. J. Clin. Invest. 117, 794–802 (2007).

Lin, X., Huang, J.C., Mitchell, T.G. & Heitman, J. Virulence attributes and hyphal growth of C. neoformans are quantitative traits and the MATalpha allele enhances filamentation. PLoS Genet. 2, e187 (2006).

Nielsen, K. et al. Cryptococcus neoformans {alpha} strains preferentially disseminate to the central nervous system during coinfection. Infect. Immun. 73, 4922–4933 (2005).

Noverr, M.C., Williamson, P.R., Fajardo, R.S. & Huffnagle, G.B. CNLAC1 is required for extrapulmonary dissemination of Cryptococcus neoformans but not pulmonary persistence. Infect. Immun. 72, 1693–1699 (2004).

Walton, F.J., Idnurm, A. & Heitman, J. Novel gene functions required for melanization of the human pathogen Cryptococcus neoformans. Mol. Microbiol. 57, 1381–1396 (2005).

Huffnagle, G.B. et al. Down-regulation of the afferent phase of T cell-mediated pulmonary inflammation and immunity by a high melanin-producing strain of Cryptococcus neoformans. J. Immunol. 155, 3507–3516 (1995).

Casadevall, A., Rosas, A.L. & Nosanchuk, J.D. Melanin and virulence in Cryptococcus neoformans. Curr. Opin. Microbiol. 3, 354–358 (2000).

Heitman, J., Filler, S.G., Edwards, J.E.J. & Mitchell, A.P. Molecular Principles of Fungal Pathogenesis 3–666 (American Society for Microbiology, Washington, DC, 2006).

Hwang, C.S. et al. Copper- and zinc-containing superoxide dismutase (Cu/ZnSOD) is required for the protection of Candida albicans against oxidative stresses and the expression of its full virulence. Microbiology 148, 3705–3713 (2002).

Cox, G.M. et al. Superoxide dismutase influences the virulence of Cryptococcus neoformans by affecting growth within macrophages. Infect. Immun. 71, 173–180 (2003).

Hooper, L.V. et al. Molecular analysis of commensal host-microbial relationships in the intestine. Science 291, 881–884 (2001).