Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation

Photochemistry and Photobiology - Tập 94 Số 2 - Trang 199-212 - 2018
Michael R. Hamblin1,2,3
1Department of Dermatology, Harvard Medical School, Boston, MA
2Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA
3Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA

Tóm tắt

Abstract

Photobiomodulation (PBM) involves the use of red or near‐infrared light at low power densities to produce a beneficial effect on cells or tissues. PBM therapy is used to reduce pain, inflammation, edema, and to regenerate damaged tissues such as wounds, bones, and tendons. The primary site of light absorption in mammalian cells has been identified as the mitochondria and, more specifically, cytochrome c oxidase (CCO). It is hypothesized that inhibitory nitric oxide can be dissociated from CCO, thus restoring electron transport and increasing mitochondrial membrane potential. Another mechanism involves activation of light or heat‐gated ion channels. This review will cover the redox signaling that occurs in PBM and examine the difference between healthy and stressed cells, where PBM can have apparently opposite effects. PBM has a marked effect on stem cells, and this is proposed to operate via mitochondrial redox signaling. PBM can act as a preconditioning regimen and can interact with exercise on muscles.

Từ khóa


Tài liệu tham khảo

10.1201/9781315364827

10.1056/NEJM196508262730906

McGuff P. E., 1964, The laser treatment of experimental malignant tumours, Can. Med. Assoc. J., 91, 1089

Mester E., 1973, Effect of laser rays on wound healing, Bull. Soc. Int. Chir., 32, 169

Mester E., 1968, The effect of laser beams on the growth of hair in mice, Radiobiol. Radiother. (Berl)., 9, 621

10.1089/pho.2005.23.431

10.1089/pho.2013.9876

10.5978/islsm.20.205

10.1089/pho.2015.9848

10.2203/dose-response.09-027.Hamblin

10.2203/dose-response.11-009.Hamblin

10.1089/104454701750066910

10.1177/0960327112455069

10.2203/dose-response.14-032.Agrawal

10.1016/j.jphotobiol.2014.07.021

10.1016/S0006-3495(94)80740-4

10.1080/09553000050029020

10.1089/pho.2005.23.355

10.1074/jbc.M409650200

10.1016/j.bbabio.2011.09.002

10.1038/443901a

10.3109/01677063.2010.514369

10.1016/j.bbalip.2014.09.010

Kim C., 2004, Transient receptor potential ion channels and animal sensation: Lessons from Drosophila functional research, J. Biochem. Mol. Biol., 37, 114

10.3390/ph9040077

10.1007/s00424-010-0920-3

10.1016/j.ceca.2016.02.009

10.1016/j.bbamcr.2015.04.016

10.1242/jcs.03049

10.1093/toxsci/kfj065

10.1021/acs.chemrestox.5b00416

10.1128/JB.138.2.523-529.1979

10.1371/journal.pbio.0060160

Yang Z., 2016, Cryptochromes orchestrate transcription regulation of diverse blue light responses in plants, Photochem. Photobiol., 93, 112, 10.1111/php.12663

10.1016/S0896-6273(00)81181-2

10.1371/journal.pbio.1000086

10.3389/fneur.2016.00159

10.1073/pnas.1612917113

10.1098/rspb.2012.2987

10.1080/23328940.2015.1115803

10.1016/j.bbabio.2013.09.003

10.1136/bjo.2005.086553

10.1016/j.exer.2014.08.012

10.1117/12.814890

10.1371/journal.pone.0022453

10.1042/BJ20081386

10.1089/ars.2013.5305

10.1007/978-1-61779-382-0_12

10.1152/physrev.00026.2013

10.1084/jem.192.7.1001

10.1016/j.bbabio.2006.04.029

10.1093/emboj/cdg009

10.1002/lsm.21100

Huang Y. Y., 2012, Low‐level laser therapy (LLLT) reduces oxidative stress in primary cortical neurons in vitro, J. Biophotonics, 610, 829

10.1089/ars.2006.8.243

10.1016/j.redox.2016.12.035

10.1016/j.taap.2012.04.030

10.1089/pho.2009.2489

10.1002/lsm.1039

10.1002/lsm.20519

10.1126/scitranslmed.3008234

10.1007/s11154-014-9308-6

10.1117/1.JBO.19.10.108002

10.1097/MED.0b013e32834afff2

Patrocinio‐Silva T. L., 2014, The effects of low‐level laser irradiation on bone tissue in diabetic rats, Lasers Med. Sci., 29, 1357

10.1016/j.abb.2008.02.030

10.1038/srep33719

10.1046/j.1432-1033.2003.03446.x

10.1016/j.jphotobiol.2013.06.004

10.3233/JAD-131661

10.1016/j.freeradbiomed.2012.08.003

10.1002/jcp.22123

Sperandio F. F., 2013, Low‐level laser therapy can produce increased aggressiveness of dysplastic and oral cancer cell lines by modulation of Akt/mTOR signaling pathway, J. Biophotonics, 610, 839, 10.1002/jbio.201300015

10.1016/j.ccr.2008.11.006

10.1016/j.bcp.2012.10.013

10.1007/s00441-015-2211-y

10.1002/jcp.25804

10.1155/2016/7403230

10.1111/j.1476-5381.2009.00373.x

10.1155/2015/549691

10.1111/j.1751-1097.2012.01214.x

10.1038/srep10581

10.1161/CIRCRESAHA.116.305348

10.1016/j.expneurol.2015.04.009

10.1161/01.CIR.74.5.1124

10.1007/s10557-010-6236-x

Ytrehus K., 1994, Preconditioning protects ischemic rabbit heart by protein kinase C activation, Am. J. Physiol., 266, H1145

10.1097/00001756-200110290-00019

10.1073/pnas.0534746100

10.1016/j.neuroscience.2005.12.047

10.1002/jbio.201500209

10.7717/peerj.2252

10.1016/j.neulet.2015.03.031

10.1155/2013/916370

10.1007/s10103-015-1723-8

10.1002/jbio.201400087

10.3109/09593985.2014.1003118

10.1007/s10103-015-1728-3

10.1002/lsm.20377

10.1002/lsm.20938

10.1002/lsm.20952

10.1002/lsm.20615

10.1016/j.cell.2014.02.013

10.1089/pho.2015.4038

10.1016/j.jphotobiol.2016.07.022

10.22203/eCM.v020a11

10.1016/j.scr.2016.09.001

10.1002/bit.26075

10.1371/journal.pone.0169921

10.12659/AOT.900463

10.1007/s10103-015-1730-9

10.1007/s00266-015-0524-6

10.1002/jbm.b.32897

10.1089/pho.2015.4020

10.1089/pho.2016.4245

10.1007/s10103-014-1699-9

10.1089/pho.2015.3988

10.1159/000368721

10.1089/pho.2015.4072

10.1126/scitranslmed.aaf4964

10.1038/srep38238

10.13075/mp.5893.00137

10.1016/j.jphotobiol.2016.09.017

10.1007/s10103-016-1882-2

10.1371/journal.pone.0153618

10.1007/s10103-011-0955-5

10.1007/978-3-319-21056-8_4-2

10.2174/092986712803413944

10.1073/pnas.0903485106

10.2174/138161282035140911142118

10.1111/brv.12103

10.1042/BCJ20160009

10.1002/cpt.533

10.1517/14728222.11.10.1329

10.1371/journal.pone.0029985

10.1007/s13105-013-0301-4

10.1016/j.cell.2008.06.051

10.1152/ajpendo.1997.273.6.E1107

10.1126/scisignal.aaf7478

10.1038/cr.2011.205

10.1002/cbf.3162

10.3390/nu8100648

10.1016/j.bbagen.2016.10.008

10.1007/s10103-012-1223-z

10.1515/plm-2012-0032

10.1002/jbio.201600176

Johnstone D. M., 2015, Turning on lights to stop neurodegeneration: The potential of near infrared light therapy in Alzheimer's and Parkinson's disease, Front Neurosci., 9, 500

10.1016/j.neuroscience.2014.05.023

Hopkins J. T., 2004, Low‐level laser therapy facilitates superficial wound healing in humans: A triple‐blind, Sham‐controlled study, J Athl Train., 39, 223

10.1007/s10103-016-2012-x

Momenzadeh S., 2015, The intravenous laser blood irradiation in chronic pain and fibromyalgia, J Lasers Med Sci., 6, 6

10.1113/jphysiol.2010.201327

10.1186/s40798-014-0003-7