Mechanism of corrosion protection in chloride solution by an apple-based green inhibitor: experimental and theoretical studies
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abd El-Lateef HM, Abu-Dief AM, Abdel-Rahman LH, Sañudo EC, Aliaga-Alcalde N (2015) Electrochemical and theoretical quantum approaches on the inhibition of C1018 carbon steel corrosion in acidic medium containing chloride using some newly synthesized phenolic Schiff bases compounds. J Electroanal Chem 743:120–133. https://doi.org/10.1016/j.jelechem.2015.02.023
Albright M (2005) Changes in water quality in an urban stream following the use of organically derived deicing products. Lake Reserv Manag 21:119–124. https://doi.org/10.1080/07438140509354419
Al-Fakih AM, Abdallah HH, Aziz M (2019) Experimental and theoretical studies of the inhibition performance of two furan derivatives on mild steel corrosion in acidic medium. Mater Corros 70:135–148. https://doi.org/10.1002/maco.201810221
Allen GC, Curtis MT, Hooper AJ, Tucker PM (1974) X-ray photoelectron spectroscopy of iron–oxygen systems. J Chem Soc Dalton Trans:1525–1530. https://doi.org/10.1039/DT9740001525
Allen GC, Hallam KR (1996) Characterisation of the spinels MxCo1−xFe2O4 (M = Mn, Fe or Ni) using X-ray photoelectron spectroscopy. Appl Surf Sci 93:25–30. https://doi.org/10.1016/0169-4332(95)00186-7
Aloysius A, Ramanathan R, Christy A, Baskaran S, Antony N (2017) Experimental and theoretical studies on the corrosion inhibition of vitamins – thiamine hydrochloride or biotin in corrosion of mild steel in aqueous chloride environment. Egypt J Pet. https://doi.org/10.1016/j.ejpe.2017.06.003
Appleman BR (1987) Painting over soluble salts: a perspective. J Prot Coat Linings 4:68–82
Ashassi-Sorkhabi H, Asghari E (2008) Effect of hydrodynamic conditions on the inhibition performance of l-methionine as a “green” inhibitor. Electrochim Acta 54:162–167. https://doi.org/10.1016/j.electacta.2008.08.024
Ashassi-Sorkhabi H, Seifzadeh D, Hosseini MG (2008) EN, EIS and polarization studies to evaluate the inhibition effect of 3H-phenothiazin-3-one, 7-dimethylamin on mild steel corrosion in 1 M HCl solution. Corros Sci 50:3363–3370. https://doi.org/10.1016/j.corsci.2008.09.022
Behpour M, Ghoreishi SM, Khayatkashani M, Soltani N (2012) Green approach to corrosion inhibition of mild steel in two acidic solutions by the extract of Punica granatum peel and main constituents. Mater Chem Phys 131:621–633. https://doi.org/10.1016/j.matchemphys.2011.10.027
Bin Ibrahim MF (2013) Effect of different sodium chloride (NaCl) concentration on corrosion of coated steel (bachelor of mechanical engineering). Universiti Malaysia Pahang. Pahang, Malaysia
Bommersbach P, Alemany-Dumont C, Millet JP, Normand B (2005) Formation and behaviour study of an environment-friendly corrosion inhibitor by electrochemical methods. Electrochim Acta 51:1076–1084. https://doi.org/10.1016/j.electacta.2005.06.001
Bozorg M, Shahrabi Farahani T, Neshati J, Chaghazardi Z, Mohammadi Ziarani G (2014) Myrtus Communis as green inhibitor of copper corrosion in sulfuric acid. Ind Eng Chem Res 53:4295–4303. https://doi.org/10.1021/ie404056w
Cao C (1996) On electrochemical techniques for interface inhibitor research. Corros Sci 38:2073–2082. https://doi.org/10.1016/S0010-938X(96)00034-0
Chen Y, Xing W, Wang L, Chen L (2019) Experimental and electrochemical research of an efficient corrosion and scale inhibitor. Mater Basel Switz 12. https://doi.org/10.3390/ma12111821
Cheng KC, Guthrie TF (1998) Liquid road deicing environment impact (498–0670). Insurance Corporation of British Columbia. North Vancouver
Chevalier M, Robert F, Amusant N, Traisnel M, Roos C, Lebrini M (2014) Enhanced corrosion resistance of mild steel in 1M hydrochloric acid solution by alkaloids extract from Aniba rosaeodora plant: electrochemical, phytochemical and XPS studies. Electrochimica Acta, Electrochem Impedance Spectroscopy 131:96–105. https://doi.org/10.1016/j.electacta.2013.12.023
Chigondo M, Chigondo F (2016) Recent natural corrosion inhibitors for mild steel: an overview. J Chem 2016:1–7. https://doi.org/10.1155/2016/6208937
Dariva CG, Galio AF, 2014. Corrosion inhibitors – principles, mechanisms and applications, in: Aliofkhazraei, M. (Ed.), Developments in corrosion protection. InTechOpen, London
Dong S, Yuan X, Chen S, Zhang L, Huang T (2018) A novel HPEI-based Hyperbranched scale and corrosion inhibitor: construction, performance, and inhibition mechanism. Ind Eng Chem Res 57:13952–13961. https://doi.org/10.1021/acs.iecr.8b03522
Ebadi M, Basirun WJ, Khaledi H, Ali HM (2012) Corrosion inhibition properties of pyrazolylindolenine compounds on copper surface in acidic media. Chem Cent J 6:163. https://doi.org/10.1186/1752-153X-6-163
Ebenso EE, Kabanda MM, Murulana LC, Singh AK, Shukla SK (2012) Electrochemical and quantum chemical investigation of some Azine and thiazine dyes as potential corrosion inhibitors for mild steel in hydrochloric acid solution. Ind Eng Chem Res 51:12940–12958. https://doi.org/10.1021/ie300965k
El-Hafez GMA, Badawy WA (2013) The use of cysteine, N-acetyl cysteine and methionine as environmentally friendly corrosion inhibitors for cu–10Al–5Ni alloy in neutral chloride solutions. Electrochim Acta 108:860–866. https://doi.org/10.1016/j.electacta.2013.06.079
Fay L, Nazari MH, Jungwirth S, Muthumani A (2015) Snow and ice control environmental best management practices. Environ Sustain Transp Infrastruct, Proc:147–161. https://doi.org/10.1061/9780784479285.013
Fernandes PAR, Ferreira SS, Bastos R, Ferreira I, Cruz MT, Pinto A, Coelho E, Passos CP, Coimbra MA, Cardoso SM, Wessel DF (2019) Apple pomace extract as a sustainable food ingredient. Antioxidants 8. https://doi.org/10.3390/antiox8060189
Fouda AS, Megahed HE, Fouad N, Elbahrawi NM (2016) Corrosion inhibition of carbon steel in 1 M hydrochloric acid solution by aqueous extract of Thevetia peruviana. J Bio- Tribo-Corros 2:1–13. https://doi.org/10.1007/s40735-016-0046-z
Frear C, Zhao B, Fu G, Richardson M, Chen S, Fuchs MR (2005) Biomass inventory and bioenergy assessment (final report no. 05–07–047). Washington State Department of Ecology. Olympia
Gabrielli C, Huet F, Keddam M, Oltra R (1990) A review of the probabilistic aspects of localized corrosion. CORROSION 46:266–278. https://doi.org/10.5006/1.3585102
Honarvar Nazari M, Havens EA, Muthumani A, Shi X (2019) Effects of processed agro-residues on the performance of sodium chloride brine anti-Icer. ACS Sustain Chem Eng 7:13655–13667. https://doi.org/10.1021/acssuschemeng.8b06043
Honarvar Nazari M, Laura F, Jungwirth S, Shi X (2015) Water quality implications and the toxicological effects of chloride-based deicers. Environ Sustain Transp Infrastruct, proceedings:272–292. https://doi.org/10.1061/9780784479285.022
Honarvar Nazari M, Xianming S (2019) Developing renewable agro-based anti-Icers for sustainable winter road maintenance operations. J Mater Civ Eng 31:04019299. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002963
Hong T, Shi H, Wang H, Gopal M, Jepson WP (2000) EIS study of corrosion product film in pipelines. CORROSION2000. Presented at the CORROSION2000, NACE International, Orlando, p 16
Hsu C, Nazari MH, Li Q, Shi X (2019) Enhancing degradation and corrosion resistance of AZ31 magnesium alloy through hydrophobic coating. Mater Chem Phys. https://doi.org/10.1016/j.matchemphys.2018.12.106
Hunter T (2012) Why nature chose phosphate to modify proteins. Philos Trans R Soc B Biol Sci 367:2513–2516. https://doi.org/10.1098/rstb.2012.0013
Husain A, Kupwade-Patil K, Al-Aibani AF, Abdulsalam MF (2017) In situ electrochemical impedance characterization of cement paste with volcanic ash to examine early stage of hydration. Construct Build Mater 133:107–117. https://doi.org/10.1016/j.conbuildmat.2016.12.054
Jamil HE, Shiri A, Boulif R, Bastos C, Montemor MF, Ferreira MGS (2004) Electrochemical behaviour of amino alcohol-based inhibitors used to control corrosion of reinforcing steel. Electrochim Acta 49:2753–2760. https://doi.org/10.1016/j.electacta.2004.01.041
Jianlin W, Hui Y, Xianming S (2016) Effectiveness of products in managing metallic corrosion induced by cyclic deicer exposure: laboratory study using multielectrode Array sensors, electrochemical impedance, and laser Profilometer. J Mater Civ Eng 28:04015186. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001449
Kamal C, Sethuraman MG (2012) Caulerpin—a bis-indole alkaloid as a green inhibitor for the corrosion of mild steel in 1 M HCl solution from the marine alga Caulerpa racemosa. Ind Eng Chem Res 51:10399–10407. https://doi.org/10.1021/ie3010379
Kim Y-S, Kim J-G (2017) Corrosion behavior of pipeline carbon steel under different iron oxide deposits in the district heating system. Metals 7:182. https://doi.org/10.3390/met7050182
Liu Y, Zou C, Yan X, Xiao R, Wang T, Li M (2015) β-Cyclodextrin modified natural chitosan as a green inhibitor for carbon steel in acid solutions. Ind Eng Chem Res 54:5664–5672. https://doi.org/10.1021/acs.iecr.5b00930
Lobo MG, Dorta E (2019) Chapter 19 - utilization and Management of Horticultural Waste. In: Yahia EM (ed) Postharvest Technology of Perishable Horticultural Commodities. Woodhead publishing, pp 639–666. https://doi.org/10.1016/B978-0-12-813276-0.00019-5
Luo J, Xu Y, Fan Y (2019) Upgrading pectin production from apple pomace by acetic acid extraction. Appl Biochem Biotechnol 187:1300–1311. https://doi.org/10.1007/s12010-018-2893-1
Ma F-Y (2012) Corrosive effects of chlorides on metals. Pitting Corros. https://doi.org/10.5772/32333
Ma H, Cheng X, Li G, Chen S, Quan Z, Zhao S, Niu L (2000) The influence of hydrogen sulfide on corrosion of iron under different conditions. Corros Sci 42:1669–1683. https://doi.org/10.1016/S0010-938X(00)00003-2
Markin VS, Volkova-Gugeshashvili MI, Volkov AG (2006) Adsorption at liquid interfaces: the generalized Langmuir isotherm and interfacial structure. J Phys Chem B 110:11415–11420. https://doi.org/10.1021/jp061818v
McIntyre NS, Zetaruk DG (1977) X-ray photoelectron spectroscopic studies of iron oxides. Anal Chem 49:1521–1529. https://doi.org/10.1021/ac50019a016
Mei L, Liao L, Wang Z, Xu C (2015) Interactions between phosphoric/tannic acid and different forms of FeOOH. Adv Mater Sci Eng 10. https://doi.org/10.1155/2015/250836
Musa AY, Kadhum AAH, Mohamad AB, Rahoma AAB, Mesmari H (2010) Electrochemical and quantum chemical calculations on 4,4-dimethyloxazolidine-2-thione as inhibitor for mild steel corrosion in hydrochloric acid. J Mol Struct 969:233–237. https://doi.org/10.1016/j.molstruc.2010.02.051
Nazari MH, Allahkaram SR (2010) The effect of acetic acid on the CO2 corrosion of grade X70 steel. Mater Des 31:4290–4295. https://doi.org/10.1016/j.matdes.2010.04.002
Nazari MH, Shi X (2018) Vehicle risks of winter road operations and best management practices. In: Sustainable winter road operations. Wiley-Blackwell, pp 241–272. https://doi.org/10.1002/9781119185161.ch12
Nazari MH, Shihab MS, Cao L, Havens EA, Shi X (2017) A peony-leaves-derived liquid corrosion inhibitor: protecting carbon steel from NaCl. Green Chem Lett Rev 10:359–379. https://doi.org/10.1080/17518253.2017.1388446
Negm NA, Elkholy YM, Zahran MK, Tawfik SM (2010) Corrosion inhibition efficiency and surface activity of benzothiazol-3-ium cationic Schiff base derivatives in hydrochloric acid. Corros Sci 52:3523–3536. https://doi.org/10.1016/j.corsci.2010.07.001
Nixon WA, Williams AD (2001) A guide for selecting anti-icing chemicals, Version 1.0 (IIHR Technical Report No. No. 420)
Nwabanne JT, Okafor VN (2012) Adsorption and thermodynamics study of the inhibition of corrosion of mild steel in H2SO4 medium using Vernonia amygdalina. J Miner Mater Charact Eng 11:885–890
Obot IB, Gasem ZM (2014) Theoretical evaluation of corrosion inhibition performance of some pyrazine derivatives. Corros Sci 83:359–366. https://doi.org/10.1016/j.corsci.2014.03.008
Obot IB, Obi-Egbedi NO (2010) Theoretical study of benzimidazole and its derivatives and their potential activity as corrosion inhibitors. Corros Sci 52:657–660. https://doi.org/10.1016/j.corsci.2009.10.017
Oguzie EE (2007) Corrosion inhibition of aluminium in acidic and alkaline media by Sansevieria trifasciata extract. Corros Sci 49:1527–1539. https://doi.org/10.1016/j.corsci.2006.08.009
Osman MM, Omar AMA, Al-Sabagh AM (1997) Corrosion inhibition of benzyl triethanol ammonium chloride and its ethoxylate on steel in sulphuric acid solution. Mater Chem Phys 50:271–274. https://doi.org/10.1016/S0254-0584(97)01941-X
Pandarinathan V, Lepková K, Bailey SI, Becker T, Gubner R (2014) Adsorption of corrosion inhibitor 1-Dodecylpyridinium chloride on carbon steel studied by in situ AFM and electrochemical methods. Ind Eng Chem Res 53:5858–5865. https://doi.org/10.1021/ie402784y
Paparazzo E (1987) XPS and auger spectroscopy studies on mixtures of the oxides SiO2, Al2O3, Fe2O3 and Cr2O3. J Electron Spectrosc Relat Phenom 43:97–112. https://doi.org/10.1016/0368-2048(87)80022-1
Pelavin M, Hendrickson DN, Hollander JM, Jolly WL (1970) Phosphorus 2p electron binding energies. Correlation with extended Hueckel charges. J Phys Chem 74:1116–1121. https://doi.org/10.1021/j100700a027
Pradityana A, Sulistijono SA, Chyntara S (2014) Eco-friendly green inhibitor of mild steel in 3,5% NaCl solution by Sarang Semut (Myrmecodia Pendans) extract. AIP Conf Proc 1617:161–164. https://doi.org/10.1063/1.4897128
Pradityana A, Sulistijono SA, Noerochim L, Susanti D (2016) Inhibition of corrosion of carbon steel in 3.5% NaCl solution by Myrmecodia Pendans extract. Int J Corros 6. https://doi.org/10.1155/2016/6058286
Rani BEA, Basu BBJ (2012) Green inhibitors for corrosion protection of metals and alloys: an overview [WWW document]. Int J Corros. https://doi.org/10.1155/2012/380217
Recloux I, Andreatta F, Druart M-E, Coelho LB, Cepek C, Cossement D, Fedrizzi L, Olivier M-G (2018) Stability of benzotriazole-based films against AA2024 aluminium alloy corrosion process in neutral chloride electrolyte. J Alloys Compd 735:2512–2522. https://doi.org/10.1016/j.jallcom.2017.11.346
Ryl J, Brodowski M, Kowalski M, Lipinska W, Niedzialkowski P, Wysocka J (2019) Corrosion inhibition mechanism and efficiency differentiation of Dihydroxybenzene isomers towards aluminum alloy 5754 in alkaline media. Materials 12. https://doi.org/10.3390/ma12193067
Sahu O, Singh N (2019) 13 - significance of bioadsorption process on textile industry wastewater. In: Shahid-ul-Islam BBS (ed) The impact and prospects of green chemistry for textile technology, The textile institute book series. Woodhead publishing, pp 367–416. https://doi.org/10.1016/B978-0-08-102491-1.00013-7
Shah AM, Rahim AA, Hamid SA, Yahya S (2013) Green inhibitors for copper corrosion by mangrove tannin. Int J Electrochem Sci 8:2140–2153
Shi X, Fay L, Yang Z, Nguyen TA, Liu Y (2009) Corrosion of deicers to metals in transportation infrastructure: introduction and recent developments. Corrosion Rev 27:23–52. https://doi.org/10.1515/CORRREV.2009.27.1-2.23
Shihab MS, Mahmood AF (2017) Experimental and theoretical study of some Npyridinium salt derivatives as corrosion inhibitors for mild-steel in 1 M H2SO4. Port. Electrochim Acta 35:39–51. https://doi.org/10.4152/pea.201701039
Shihab MS, Nazari MH, Fay L (2016) Study of inhibition effect of pyridinium salt derivative on corrosion of C1010 carbon steel in saline solution. Prot Met Phys Chem Surf 52:714–720. https://doi.org/10.1134/S2070205116040213
Sin HLY, Abdul Rahim A, Gan CY, Saad B, Salleh MI, Umeda M (2017) Aquilaria subintergra leaves extracts as sustainable mild steel corrosion inhibitors in HCl. Measurement 109:334–345. https://doi.org/10.1016/j.measurement.2017.05.045
Somasundaran P (2004) Encyclopedia of surface and colloid science, 2004 update supplement. CRC Press. Boca Raton, FL, USA
Stewart JJP (1989) Optimization of parameters for semiempirical methods I. Method J Comput Chem 10:209–220. https://doi.org/10.1002/jcc.540100208
Suarez R, Gonzalez-Rodriguez J, Dominguez-Patino G, Martinez-Villafane A (2014) Use of Opuntia ficus extract as a corrosion inhibitor for carbon steel in acidic media. Anti-Corros Methods Mater 61. https://doi.org/10.1108/ACMM-01-2013-1238
Suedile F, Robert F, Roos C, Lebrini M (2014) Corrosion inhibition of zinc by Mansoa alliacea plant extract in sodium chloride media: extraction, characterization and electrochemical studies. Electrochim Acta 133:631–638. https://doi.org/10.1016/j.electacta.2013.12.070
Surendranath Y, Kanan MW, Nocera DG (2010) Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. J Am Chem Soc 132:16501–16509. https://doi.org/10.1021/ja106102b
Tao Z, He W, Wang S, Zhou G (2013) Electrochemical study of Cyproconazole as a novel corrosion inhibitor for copper in acidic solution. Ind Eng Chem Res 52:17891–17899. https://doi.org/10.1021/ie402693d
Umoren SA, Obot IB, Madhankumar A, Gasem ZM (2015) Performance evaluation of pectin as ecofriendly corrosion inhibitor for X60 pipeline steel in acid medium: experimental and theoretical approaches. Carbohydr Polym 124:280–291. https://doi.org/10.1016/j.carbpol.2015.02.036
Verma C, Quraishi MA, Kluza K, Makowska-Janusik M, Olasunkanmi LO, Ebenso EE (2017) Corrosion inhibition of mild steel in 1M HCl by D-glucose derivatives of dihydropyrido [2,3-d:6,5-d′] dipyrimidine-2, 4, 6, 8(1H,3H, 5H,7H)-tetraone. Sci Rep 7:44432. https://doi.org/10.1038/srep44432
Wang X, Chen Q, Lü X (2014) Pectin extracted from apple pomace and citrus peel by subcritical water. Food Hydrocoll 38:129–137. https://doi.org/10.1016/j.foodhyd.2013.12.003
Yoshida T, Sawada S (1974) X-ray photoelectron spectroscopy of EDTA. Bull Chem Soc Jpn 47:50–53. https://doi.org/10.1246/bcsj.47.50