Mechanism of corrosion fatigue cracking of automotive coil spring steel
Tóm tắt
The AISI 300M ultra-high strength steel was applied for the automotive suspension coil spring. Recently, some premature failures were reported, which caused by synergistic effect of cyclic mechanical stress and corrosion, namely corrosion fatigue cracking. In this study, the accurate mechanism of corrosion fatigue cracking for coil spring steel was studied for the proper prevention method against the catastrophic failure. Fatigue life was evaluated in 5 wt% NaCl solution under the anodic dissolution and hydrogen embrittlement conditions, which is simulated by applying constant potentials. Scanning electron microscopy and energy dispersive X-ray spectroscopy analysis indicated that the corrosion fatigue cracking was initiated at the MnS inclusion of the pit initiation site. The calculation of hydrogen production corresponding to each corrosion fatigue test condition revealed the two operating mechanisms of the cracking process. The corrosion fatigue cracking failure of coil spring steel was mainly caused by the anodic dissolution combined with hydrogen embrittlement.
Tài liệu tham khảo
P. Doke, M. Fard, and R. Jazar, Procedia Eng. 49, 287 (2012).
C. J. Hwan, J. B. Jeon, and Y. Won Chang, Met. Mater. Int. 16, 533 (2010).
W. J. Nam, C. S. Lee, and D. Y. Ban, Mater. Sci. Eng. A 289, 8 (2000).
D. Xu, Z. Yin, and D. Liu, J. Mater. Sci. Technol 20, 557 (2005).
T. E. Pistochini and M. R. Hill, Fatigue Fract. Eng. Mater. Struct 34, 521 (2011).
D. Hornbach and P. Prevéy, Proceedings of 2007 SAE Aero- Tech Congress & Exhibition, p.2007-01-3838, Los Angeles, USA (2007).
T. V. Philip, T. J. McCaffrey, Properties and Selection: Irons, Steels, and High Performance Alloys, 10th ed., pp.962–994, Vol. 1, ASM International, Material Park, OH (2005).
Y. Zhu, Y. Wang, and Y. Huang, Case Studies in Engineering Failure Analysis 2, 169 (2014).
S. K. Das, N. K. Mukhopadhyay, B. R. Kumar, and D. K., Eng. Fail. Anal. 14, 158 (2007).
Y. Prawoto, M. Ikeda, S. K. Manville, and A. Nishikawa, Eng. Fail. Anal. 15, 1155 (2008).
A. Yoneguchi, J. Schaad, Y. Kurebayashi, and Y. Ito, SAE Technical Paper, 01–0098 (2000).
W. J. Kim, J. G. Kim, Y. S. Kim, I. Ozdemir, and Y. Tsunekawak, Met. Mater. Int. 13, 317 (2007).
S. I. Komazaki, K. Kobayashi, T. Misawa, and T. Fukuzumi, Corros. Sci. 47, 2450 (2005).
A. C. Ramamurthy, W. I. Lorenzen, and S. J. Bless, Prog. Org. Coat. 25, 43 (1994).
Y. S. Choi, J. G. Kim, Y. S. Kim, and J. Y. huh, Int. J. Automot. Technol. 9, 625 (2008).
K. Genel, M. Demirkol, and M. Çapa, Mater. Sci. Eng. A 279, 207 (2000).
K. Genel, M. Demirkol, and M. Ürgen, Int. J. Fatigue 24, 537 (2002).
M. Karim and D. Dengel, Metall. Trans. A 27A, 1333 (1996).
F. Oliveria, L. Hernández, J.A. Berríos, C. Villalobos, A. Pertuz, and E. S. Punchi Carbrera, Surf. Coat. Technol. 140, 128 (2001).
M. S. Baxa, Y. A. Chang, and L. H. Burck, Metall. Tans. A 9A, 1141 (1978).
S. Tekeli, Mater. Lett. 57, 604 (2002).
Y. K. Gao, X. Li. Q. X. Yang, and M. Yao, Mater. Lett. 61, 466 (2007).
S. Bagherifard, I. Fernandez-Pariente, R. Ghelichi, and M. Guagliano, Int. J. Fatigue 65, 64 (2014).
D. A. Jones, Principles and Prevention of Corrosion, 2nd ed., pp.244–252, Prentice Hall, Upper Saddle River, NJ, USA (1996).
J. K. Kwon, D. H. Ahn, D. H. Jeong, Y. J. Kim, N. S. Woo, and S. S. Kim, Korean J. Met. Mater. 52, 757 (2014).
M. G. Fontana, Corrosion Engineering, 3rd ed., p.399, McGraw-Hill, NY Columbus, NW, USA (1986).
S. Ishihara, Z. Y. Nan, and A. J. McEvily, Int. J. Fatigue 30, 1659 (2008).
M. R. Louthan ffixJr., J. Fail. Anal. and Preven. 8, 289 (2008).
L. Tau, S. L. I. Chan, and C. S. Shin, Corros. Sci. 38, 2049 (1996).
N. Eliaz, A. Shachar, B. Tal, and D. Eliezer, Eng. Fail. Anal. 9, 167 (2007).
ASTM Standard E8/8M, Standard Test Methods for Tension Testing of Metallic Materials, ASTM (2013).
G. F. Vander Voort, Metallography and Microstructures, 10th ed., Vol. 9, pp.170–172, ASM International, Material Park, OH, USA (2004).
C. L. Magee and R. G. Davies, Acta Metall. 19, 345 (1971).
M. Umemoto, E. Yoshitake, and I. Tamura, J. Mater. Sci. 18, 2893 (1983).
B. Craing and G. Krauss, Metall. Trans. A 11, 1799 (1980).
J. E. Costa and A. W. Thompson, Metall. Trans. A 12, 761 (1981).
R. L. S. Thomas, J. R. Scully, and R. P. Gangloff, Metall. Tans. A 34, 327 (2003).
A. Nagao, C. D. Smith, M. Dadfarnia, P. Sofronis, and I. M. Robertson, Acta Mater. 60, 5182 (2012).
B. E. Wilde, Corrosion 27, 326 (1971).
D. A. Jones, Metall. Trans. A 16, 1133 (1985).
C. S. Kortovich and E. A. Steigerwald, Eng. Fract. Mech. 4, 637 (1972).
Y. Wang, W. Zhao, H. Ai, X. Zhou, and T. Zhang, Corros. Sci. 53, 2761 (2011).
W. Zhzo, R Xin, Z. He, and Y. Wang, Corros. Sci. 63, 387 (2012).
D. J. Duquette and H. H. Uhlig, Trans. ASM. 62, 839 (1969).
H. H. Lee and H. H. Uhlig, Metall. Trans. A 3, 2949 (1972).
E. E. Stansbury and R. A. Buchanan, Fundamentals of Electrochemical Corrosion, pp.174–177, ASM International, Materials Park, OH, USA (2000).
E. McCafferty, Corros. Sci. 47, 3202 (2005).
Y. Kondo, Corrosion 45, 7 (1989).
Y. Wang and R. Akid, Corrosion 52, 92 (1996).
G. P. Ray, R. A. Jarman, and J. G. N. Thomas, Corros. Sci. 25, 171 (1985).
J. T. Ransom, Trans. ASM. 46, 1254 (1954).