Cơ chế tác động của 1,25-dihydroxyvitamin D3 lên sự hấp thu canxi ở ruột

Reviews in Endocrine and Metabolic Disorders - Tập 13 - Trang 39-44 - 2011
Sylvia Christakos1
1Department of Biochemistry and Molecular Biology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, USA

Tóm tắt

1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) là hormone kiểm soát chính của sự hấp thu canxi ở ruột. Khi nhu cầu canxi của cơ thể tăng lên do chế độ ăn thiếu canxi, do sự tăng trưởng, mang thai hoặc cho con bú, quá trình tổng hợp 1,25(OH)2D3 được tăng cường, dẫn đến sự kích thích hấp thu canxi ở ruột. Tuy nhiên, mô tả đầy đủ về các cơ chế phân tử tham gia vào quá trình hấp thu canxi được điều chỉnh bởi 1,25(OH)2D3 vẫn chưa hoàn chỉnh. Sự hấp thu canxi ở ruột diễn ra qua cả một con đường tế bào chủ động có thể bão hòa và một con đường kẽ tế bào thụ động không bão hòa. Mỗi bước trong quá trình vận chuyển canxi tế bào chủ động (sự xâm nhập của canxi vào bề mặt trên của tế bào, quá trình vận chuyển canxi qua bên trong tế bào nhu mô và sự thải canxi ra bên ngoài tế bào qua bơm màng tế bào) đã được báo cáo là liên quan đến một thành phần phụ thuộc vào vitamin D. Bài viết này sẽ xem xét các nghiên cứu gần đây, bao gồm những nghiên cứu sử dụng chuột knockout, đã gợi ý rằng sự hấp thụ canxi do 1,25(OH)2D3 trung gian phức tạp hơn mô hình ba bước truyền thống của vận chuyển canxi tế bào chủ động. Các khái niệm hiện tại sẽ được xem xét lại và những câu hỏi còn tồn tại sẽ được thảo luận. Bằng chứng về vai trò của 1,25(OH)2D3 trong việc điều chỉnh con đường kẽ tế bào cũng sẽ được đề cập.

Từ khóa

#1 #25-Dihydroxyvitamin D3 #hấp thu canxi #cơ chế phân tử #đường truyền canxi tế bào #chuột knockout

Tài liệu tham khảo

Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol. 2003;4:517–29. Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357:266–81. Holick MF. Resurrection of vitamin D deficiency and rickets. J Clin Invest. 2006;116:2062–72. Lips P. Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications. Endocr Rev. 2001;22:477–501. Bouillon R, Bischoff-Ferrari H, Willett W. Vitamin D and health: perspectives from mice and man. J Bone Miner Res. 2008;23:974–9. Li YC, Pirro AE, Amling M, Delling G, Baron R, Bronson R, et al. Targeted ablation of the vitamin D receptor: an animal model of vitamin D-dependent rickets type II with alopecia. Proc Natl Acad Sci USA. 1997;94:9831–5. Yoshizawa T, Handa Y, Uematsu Y, Takeda S, Sekine K, Yoshihara Y, et al. Mice lacking the vitamin D receptor exhibit impaired bone formation, uterine hypoplasia and growth retardation after weaning. Nat Genet. 1997;16:391–6. Wasserman RH. Vitamin D and the dual processes of intestinal calcium absorption. J Nutr. 2004;134:3137–9. Marcus CS, Lengemann FW. Absorption of Ca45 and Sr85 from solid and liquid food at various levels of the alimentary tract of the rat. J Nutr. 1962;77:155–60. Cramer CF. Sites of calcium absorption and the calcium concentration of gut contents in the dog. Can J Physiol Pharmacol. 1965;43:75–8. Fleet JC, Schoch RD. Molecular mechanisms for regulation of intestinal calcium and phosphate absorption by vitamin D. In: Feldman D, Pike JW, Adams J, editors. Vitamin D. Chapter 19. 3rd ed. San Diego: Academic; 2011. p. 349–62. Barger-Lux MJ, Heaney RP, Recker RR. Time course of calcium absorption in humans: evidence for a colonic component. Calcif Tissue Int. 1989;44:308–11. Favus MJ. Factors that influence absorption and secretion of calcium in the small intestine and colon. Am J Physiol. 1985;248:G147–57. Favus MJ, Kathpalia SC, Coe FL, Mond AE. Effects of diet calcium and 1,25-dihydroxyvitamin D3 on colon calcium active transport. Am J Physiol. 1980;238:G75–8. Vergne-Marini P, Parker TF, Pak CY, Hull AR, DeLuca HF, Fordtran JS. Jejunal and ileal absorption in patients with chronic renal disease. Effect of 1alpha-hydroxycholecalciferol. J Clin Invest. 1976;57:861–6. Grinstead WC, Pak CY, Krejs GJ. Effect of 1,25-dihydroxyvitamin D3 on calcium absorption in the colon of healthy humans. Am J Physiol. 1984;247:G189–92. Stumpf WE, Sar M, Reid FA, Tanaka Y, DeLuca HF. Target cells for 1,25-dihydroxyvitamin D3 in intestinal tract, stomach, kidney, skin, pituitary, and parathyroid. Science. 1979;206:1188–90. Xue Y, Fleet JC. Intestinal vitamin D receptor is required for normal calcium and bone metabolism in mice. Gastroenterology. 2009;136:1317–27. e1–2. Hirst MA, Feldman D. 1,25-Dihydroxyvitamin D3 receptors in mouse colon. J Steroid Biochem. 1981;14:315–9. Chandra S, Fullmer CS, Smith CA, Wasserman RH, Morrison GH. Ion microscopic imaging of calcium transport in the intestinal tissue of vitamin D-deficient and vitamin D-replete chickens: a 44Ca stable isotope study. Proc Natl Acad Sci USA. 1990;87:5715–9. Fullmer CS, Chandra S, Smith CA, Morrison GH, Wasserman RH. Ion microscopic imaging of calcium during 1,25-dihydroxyvitamin D-mediated intestinal absorption. Histochem Cell Biol. 1996;106:215–22. Wasserman RH. Vitamin D and intestinal absorption of calcium: a review and overview. In: Feldman D, Pike JW, Glorieux F, editors. Vitamin D. 2nd ed. San Diego: Academic; 2004. p. 411–28. Peng JB, Chen XZ, Berger UV, Vassilev PM, Tsukaguchi H, Brown EM, et al. Molecular cloning and characterization of a channel-like transporter mediating intestinal calcium absorption. J Biol Chem. 1999;274:22739–46. Peng JB, Brown EM, Hediger MA. Hediger, Apical entry channels in calcium-transporting epithelia. News Physiol Sci. 2003;18:158–63. Teerapornpuntakit J, Dorkkam N, Wongdee K, Krishnamra N, Charoenphandhu N. Endurance swimming stimulates transepithelial calcium transport and alters the expression of genes related to calcium absorption in the intestine of rats. Am J Physiol Endocrinol Metab. 2009;296:E775–86. Zhang W, Na T, Wu G, Jing H, Peng JB. Down-regulation of intestinal apical calcium entry channel TRPV6 by ubiquitin E3 ligase Nedd4-2. J Biol Chem. 2010;285:36586–96. Song Y, Peng X, Porta A, Takanaga H, Peng JB, Hediger MA, et al. Calcium transporter 1 and epithelial calcium channel messenger ribonucleic acid are differentially regulated by 1,25 dihydroxyvitamin D3 in the intestine and kidney of mice. Endocrinology. 2003;144:3885–94. Van Cromphaut SJ, Dewerchin M, Hoenderop JG, Stockmans I, Van Herck E, Kato S, et al. Duodenal calcium absorption in vitamin D receptor-knockout mice: functional and molecular aspects. Proc Natl Acad Sci USA. 2001;98:13324–9. Bianco SD, Peng JB, Takanaga H, Suzuki Y, Crescenzi A, Kos CH, et al. Marked disturbance of calcium homeostasis in mice with targeted disruption of the Trpv6 calcium channel gene. J Bone Miner Res. 2007;22:274–85. Benn BS, Ajibade D, Porta A, Dhawan P, Hediger M, Peng JB, et al. Active intestinal calcium transport in the absence of transient receptor potential vanilloid type 6 and calbindin-D9k. Endocrinology. 2008;149:3196–205. Kutuzova GD, Sundersingh F, Vaughan J, Tadi BP, Ansay SE, Christakos S, et al. TRPV6 is not required for 1alpha, 25-dihydroxyvitamin D3-induced intestinal calcium absorption in vivo. Proc Natl Acad Sci USA. 2008;105:19655–9. Lieben L, Benn BS, Ajibade D, Stockmans I, Moermans K, Hediger MA, et al. Trpv6 mediates intestinal calcium absorption during calcium restriction and contributes to bone homeostasis. Bone. 2010;47(2):301–8. Cui M, Fleet J. Transgenic overexpression of human TRPV6 in intestine increases calcium absorption efficiency and improves bone mass in mice. J Bone Mineral Res. 2010;25:s59. Christakos S, Gabrielides C, Rhoten WB. Vitamin D-dependent calcium binding proteins: chemistry, distribution, functional considerations, and molecular biology. Endocr Rev. 1989;10:3–26. Christakos S, Mady LJ, Dhawan P. The calbindins: calbindin −D28k and calbindin −D9k and the epithelial calcium channels TRPV5 and TRPV6. In: Feldman D, Pike JW, Adams J, editors. Vitamin D. Chapter 20. 3rd ed. San Diego: Academic; 2011. p. 363–79. Taylor AN, Wasserman RH. Correlations between the vitamin D-induced calcium binding protein and intestinal absorption of calcium. Fed Proc. 1969;28:1834–8. Akhter S, Kutuzova GD, Christakos S, DeLuca HF. Calbindin D9k is not required for 1,25-dihydroxyvitamin D3-mediated Ca2+ absorption in small intestine. Arch Biochem Biophys. 2007;460:227–32. Lee D, Obukhov AG, Shen Q, Liu Y, Dhawan P, Nowycky MC, et al. Calbindin-D28k decreases L-type calcium channel activity and modulates intracellular calcium homeostasis in response to K+ depolarization in a rat beta cell line RINr1046-38. Cell Calcium. 2006;39:475–85. Harteneck C. Proteins modulating TRP channel function. Cell Calcium. 2003;33:303–10. Lambers TT, Weidema AF, Nilius B, Hoenderop JG, Bindels RJ. Regulation of the mouse epithelial Ca2(+) channel TRPV6 by the Ca(2+)-sensor calmodulin. J Biol Chem. 2004;279:28855–61. Lambers TT, Mahieu F, Oancea E, Hoofd L, de Lange F, Mensenkamp AR, et al. Calbindin-D28K dynamically controls TRPV5-mediated Ca2+ transport. EMBO J. 2006;25:2978–88. Ghijsen WE, Van Os CH. 1 alpha, 25-Dihydroxy-vitamin D-3 regulates ATP-dependent calcium transport in basolateral plasma membranes of rat enterocytes. Biochim Biophys Acta. 1982;689:170–2. Cai Q, Chandler JS, Wasserman RH, Kumar R, Penniston JT. Vitamin D and adaptation to dietary calcium and phosphate deficiencies increase intestinal plasma membrane calcium pump gene expression. Proc Natl Acad Sci USA. 1993;90:1345–9. Ghijsen WE, De Jong MD, Van Os CH. Kinetic properties of Na+/Ca2+ exchange in basolateral plasma membranes of rat small intestine. Biochim Biophys Acta. 1983;730:85–94. Wasserman RH, Kallfelz FA. Vitamin D3 and unidirectional calcium fluxes across the rachitic chick duodenum. Am J Physiol. 1962;203:221–4. Dostal LA, Toverud SU. Effect of vitamin D3 on duodenal calcium absorption in vivo during early development. Am J Physiol. 1984;246:G528–34. Chirayath MV, Gajdzik L, Hulla W, Graf J, Cross HS, Peterlik M. Vitamin D increases tight-junction conductance and paracellular Ca2+ transport in Caco-2 cell cultures. Am J Physiol. 1998;274:G389–96. Pansu D, Bellaton C, Bronner F. Effect of Ca intake on saturable and nonsaturable components of duodenal Ca transport. Am J Physiol. 1981;240:G32–7. Tsukita S, Furuse M, Itoh M. Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol. 2001;2:285–93. Fujita H, Sugimoto K, Inatomi S, Maeda T, Osanai M, Uchiyama Y, et al. Tight junction proteins claudin-2 and −12 are critical for vitamin D-dependent Ca2+ absorption between enterocytes. Mol Biol Cell. 2008;19:1912–21. Holmes JL, Van Itallie CM, Rasmussen JE, Anderson JM. Claudin profiling in the mouse during postnatal intestinal development and along the gastrointestinal tract reveals complex expression patterns. Gene Expr Patterns. 2006;6:581–8. Christakos S, Dhawan P, Ajibade D, Benn BS, Feng J, Joshi SS. Mechanisms involved in vitamin D mediated intestinal calcium absorption and in non-classical actions of vitamin D. J Steroid Biochem Mol Biol. 2010;121:183–7. Kutuzova GD, Deluca HF. Gene expression profiles in rat intestine identify pathways for 1,25-dihydroxyvitamin D(3) stimulated calcium absorption and clarify its immunomodulatory properties. Arch Biochem Biophys. 2004;432:152–66. Gallagher JC, Riggs BL, Eisman J, Hamstra A, Arnaud SB, DeLuca HF. Intestinal calcium absorption and serum vitamin D metabolites in normal subjects and osteoporotic patients: effect of age and dietary calcium. J Clin Invest. 1979;64:729–36.