Mechanism of Paleo-Mesoproterozoic rifts related to breakup of Columbia supercontinent: A paleostress field modeling

Journal of Geodynamics - Tập 107 - Trang 46-60 - 2017
Shuai Sun1, Guiting Hou1, K.R. Hari2, Shuwen Liu1, Shuwei Guan3
1The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, China
2School of Studies in Geology and Water Resource Management, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
3PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China

Tài liệu tham khảo

Belica, 2014, Paleoproterozoic mafic dyke swarms from the Dharwar craton; paleomagnetic poles for India from 2.37 to 1.88Ga and rethinking the Columbia supercontinent, Precambrian Res., 244, 100, 10.1016/j.precamres.2013.12.005 Bott, 1992, The stress regime associated with continental break-up, Geol. Soc. Lond. Spec. Publ., 68, 125, 10.1144/GSL.SP.1992.068.01.08 Burov, 2014, Asymmetric three-dimensional topography over mantle plumes, Nature, 513, 85, 10.1038/nature13703 Burov, 2011, 693 Chatterjee, 2002, Effects of rock mechanical properties on local stress field of the Mahanadi basin, India-results from finite element modeling, Geophys. Res. Lett., 29, 28-1, 10.1029/2001GL013447 Chaudhuri, 2002, The Purana basins of southern cratonic province of India-a case for Mesoproterozoic fossil rifts, Gondwana Res., 5, 23, 10.1016/S1342-937X(05)70884-4 Chen, 2013, Paleomagnetism of ca. 1.35 Ga sills in northern North China Craton and implications for paleogeographic reconstruction of the Mesoproterozoic supercontinent, Precambrian Res., 228, 36, 10.1016/j.precamres.2013.01.011 Ding, 1998, A new method for quantitative prediction of tectonic fracture–two factors method, Oil Gas Geol., 19, 1 Diwu, 2014, Early Paleoproterozoic (2.45–2.20 Ga) magmatic activity during the period of global magmatic shutdown: implications for the crustal evolution of the southern North China Craton, Precambrian Res., 255, 627, 10.1016/j.precamres.2014.08.001 Eckert, 2014, Large©\scale mechanical buckle fold development and the initiation of tensile fractures, Geochem. Geophys. Geosyst., 15, 4570, 10.1002/2014GC005502 Eriksson, 1999, The 2.7–2.0 Ga volcano-sedimentary record of Africa, India and Australia: evidence for global and local changes in sea level and continental freeboard, Precambrian Res., 97, 269, 10.1016/S0301-9268(99)00035-2 Ernst, 2002, Maximum size and distribution in time and space of mantle plumes: evidence from large igneous provinces, J. Geodyn., 34, 309, 10.1016/S0264-3707(02)00025-X Ernst, 2008 Fluent, 2012 Frehner, 2011, The neutral lines in buckle folds, J. Struct. Geol., 33, 1501, 10.1016/j.jsg.2011.07.005 French, 2010, Precise U–Pb dating of Paleoproterozoic mafic dyke swarms of the Dharwar craton, India: implications for the existence of the Neoarchean supercraton Sclavia, Precambrian Res., 183, 416, 10.1016/j.precamres.2010.05.003 French, 2008, 1891–1883Ma Southern Bastar–Cuddapah mafic igneous events, India: a newly recognized large igneous province, Precambrian Res., 160, 308, 10.1016/j.precamres.2007.08.005 Gessner, 2011, Hot lithosphere at Mount Isa: implications for Proterozoic tectonics and mineralisation, Aust. J. Earth Sci., 58, 875, 10.1080/08120099.2011.571284 Guo, 2005, Sm-Nd and SHRIMP U-Pb zircon geochronology of high-pressure granulites in the Sanggan area, North China Craton: timing of Paleoproterozoic continental collision, J. Asian Earth Sci., 24, 629, 10.1016/j.jseaes.2004.01.017 Guo, 2012, UHT sapphirine granulite metamorphism at 1.93–1.92 Ga caused by gabbronorite intrusions: implications for tectonic evolution of the northern margin of the North China Craton, Precambrian Res., 222, 124, 10.1016/j.precamres.2011.07.020 Halls, 2000, A precisely dated Proterozoic palaeomagnetic pole from the North China craton, and its relevance to paleocontinental reconstruction, Geophys. J. Int., 143, 185, 10.1046/j.1365-246x.2000.00231.x Halls, 2007, Paleomagnetism and U–Pb geochronology of easterly trending dykes in the Dharwar craton, India: feldspar clouding, radiating dyke swarms and the position of India at 2.37 Ga, Precambrian Res., 155, 47, 10.1016/j.precamres.2007.01.007 He, 2009, SHRIMP and LA-ICP-MS zircon geochronology of the Xiong’er volcanic rocks: implications for the Paleo-Mesoproterozoic evolution of the southern margin of the North China Craton, Precambrian Res., 168, 213, 10.1016/j.precamres.2008.09.011 Hou, 2014, Mesozoic-Cenozoic extension of the Bohai Sea: contribution to the destruction of North China Craton, Front. Earth Sci., 8, 202, 10.1007/s11707-014-0413-3 Hou, 2001, The tectonic evolution of Bohai Basin in Mesozoic and Cenozoic time, Acta Sci. Nat.-Univ. Pekin., 37, 845 Hou, 2005, The SHRIMP U-Pb chronology of mafic dyke swarms: a case study of Laiwu diabase dykes in western Shandong, Acta Petrol. Mineral., 24, 179 Hou, 2005, The precambrian basic dyke swarms in the western Shandong province, Acta Geol. Sin., 79, 190 Hou, 2006, Evidence for ∼1.8 Ga extension of the Eastern Block of the North China Craton from SHRIMP U–Pb dating of mafic dyke swarms in Shandong Province, J. Asian Earth Sci., 27, 392, 10.1016/j.jseaes.2005.05.001 Hou, 2006, Late Paleoproterozoic extension and a paleostress field reconstruction of the North China Craton, Tectonophysics, 422, 89, 10.1016/j.tecto.2006.05.008 Hou, 2008, Geochemical constraints on the tectonic environment of the Late Paleoproterozoic mafic dyke swarms in the North China Craton, Gondwana Res., 13, 103, 10.1016/j.gr.2007.06.005 Hou, 2008, Configuration of the Late Paleoproterozoic Columbia supercontinent: insights from radiating mafic dyke swarms, Gondwana Res., 14, 395, 10.1016/j.gr.2008.01.010 Hou, 2008, Tectonic constraints on 1.3–1.2 Ga final breakup of Columbia supercontinent from a giant radiating dyke swarm, Gondwana Res., 14, 561, 10.1016/j.gr.2008.03.005 Hou, 2010, Mechanics of the giant radiating Mackenzie dyke swarm: a paleostress field modeling, J. Geophys. Res.: Solid Earth, 115, 1448, 10.1029/2007JB005475 Hou, 2010, The Late Triassic and Late Jurassic stress fields and tectonic transmission of North China craton, J. Geodyn., 50, 318, 10.1016/j.jog.2009.11.007 Hou, 2012, Mechanism for three types of mafic dyke swarms, Geosci. Front., 3, 217, 10.1016/j.gsf.2011.10.003 Hu, 2013, SHRIMP U-Pb zircon dating of the Ordos Basin basement and its tectonic significance, Chin. Sci. Bull., 58, 118, 10.1007/s11434-012-5274-0 Hu, 2014, Depositional age, provenance and tectonic setting of the Proterozoic Ruyang Group, southern margin of the North China Craton, Precambrian Res., 246, 296, 10.1016/j.precamres.2014.03.013 Ju, 2013, Mechanics of mafic dyke swarms in the Deccan Large Igneous Province: palaeostress field modelling, J. Geodyn., 66, 79, 10.1016/j.jog.2013.02.002 Koptev, 2015, Dual continental rift systems generated by plume-lithosphere interaction, Nat. Geosci., 8, 388, 10.1038/ngeo2401 Kröner, 2005, Age and evolution of a late Archean to Paleoproterozoic upper to lower crustal section in the Wutaishan/Hengshan/Fuping terrain of northern China, J. Asian Earth Sci., 24, 577, 10.1016/j.jseaes.2004.01.001 Kumar, 2012, A Paleoproterozoic giant radiating dyke swarm in the Dharwar Craton, southern India, Geochem. Geophys. Geosyst., 13, 10.1029/2011GC003926 Kusky, 2003, Paleoproterozoic tectonic evolution of the north China craton, J. Asian Earth Sci., 22, 383, 10.1016/S1367-9120(03)00071-3 Kusky, 2007, The paleoproterozoic north Hebei orogen: north China craton's collisional suture with the Columbia supercontinent, Gondwana Res., 12, 4, 10.1016/j.gr.2006.11.012 Lan, 2014, Diagenetic xenotime age constraints on the Sanjiaotang Formation, Luoyu Group, southern margin of the North China Craton: implications for regional stratigraphic correlation and early evolution of eukaryotes, Precambrian Res., 251, 21, 10.1016/j.precamres.2014.06.012 Lesne, 1998, Finite element modelling of crustal deformation in the Baikal rift zone: new insights into the active–passive rifting debate, Tectonophysics, 289, 327, 10.1016/S0040-1951(98)00004-3 Li, 2012, Mesozoic basins in eastern China and their bearing on the deconstruction of the North China Craton, J. Asian Earth Sci., 47, 64, 10.1016/j.jseaes.2011.06.008 Li, 2015, Nature of 1800–1600Ma mafic dyke swarms in the North China Craton: implications for the rejuvenation of the sub-continental lithospheric mantle, Precambrian Res., 257, 114, 10.1016/j.precamres.2014.12.002 Liao, 2014, Influence of lithospheric mantle stratification on craton extension: insight from two-dimensional thermo-mechanical modeling, Tectonophysics, 631, 50, 10.1016/j.tecto.2014.01.020 Liao, 2013, Layered structure of the lithospheric mantle changes dynamics of craton extension, Geophys. Res. Lett., 40, 5861, 10.1002/2013GL058081 Liu, 1999, 42 Liu, 2004, Archean geodynamics in the Central Zone, North China Craton: constraints from geochemistry of two contrasting series of granitoids in the Fuping and Wutai complexes, Precambrian Res., 130, 229, 10.1016/j.precamres.2003.12.001 Liu, 2006, Th–U–Pb monazite geochronology of the Lüliang and Wutai Complexes: constraints on the tectonothermal evolution of the Trans-North China Orogen, Precambrian Res., 148, 205, 10.1016/j.precamres.2006.04.003 Liu, 2011, Zircon U–Pb chronology of the Jianping Complex: implications for the Precambrian crustal evolution history of the northern margin of North China Craton, Gondwana Res., 20, 48, 10.1016/j.gr.2011.01.003 Logan, D.L., 2007. A First Course in the Finite Element Method, 4th edition, Brooks/Cole, Pacific Grove, CA. Lu, 2008, Precambrian metamorphic basement and sedimentary cover of the North China Craton: a review, Precambrian Res., 160, 77, 10.1016/j.precamres.2007.04.017 Mazumder, 2000, A commentary on the tectono-sedimentary record of the pre-2.0 Ga continental growth of India vis-a-vis a possible pre-Gondwana Afro-Indian supercontinent, J. Afr. Earth Sci., 30, 201, 10.1016/S0899-5362(00)00016-6 Meert, 2010, Precambrian crustal evolution of Peninsular India: a 3.0 billion year odyssey, J. Asian Earth Sci., 39, 483, 10.1016/j.jseaes.2010.04.026 Meert, 2011, Preliminary report on the paleomagnetism of 1.88 Ga dykes from the Bastar and Dharwar cratons, Peninsular India, Gondwana Res., 20, 335, 10.1016/j.gr.2011.03.005 Meng, 2011, Stratigraphic and sedimentary records of the rift to drift evolution of the northern North China craton at the Paleo-to Mesoproterozoic transition, Gondwana Res., 20, 205, 10.1016/j.gr.2010.12.010 Murthy, 1995, Proterozoic mafic dykes in southern peninsular India: a review, Geol. Soc. India Memoir, 33, 81 Nagaraja Rao, 1987, Stratigraphy, structure and evolution of the Cuddapah basin, Mem. Geol. Soc. India, 6, 33 Peng, 2005, Geochronological constraints on the Paleoproterozoic evolution of the North China Craton: SHRIMP zircon ages of different types of mafic dikes, Int. Geol. Rev., 47, 492, 10.2747/0020-6814.47.5.492 Peng, 2007, Nature of mantle source contributions and crystal differentiation in the petrogenesis of the 1.78 Ga mafic dykes in the central North China craton, Gondwana Res., 12, 29, 10.1016/j.gr.2006.10.022 Peng, 2008, A 1.78 Ga large igneous province in the North China craton: the Xiong'er Volcanic Province and the North China dyke swarm, Lithos, 101, 260, 10.1016/j.lithos.2007.07.006 Peng, 2012, Age of the Miyun dyke swarm: constraints on the maximum depositional age of the Changcheng System, Chin. Sci. Bull., 57, 105, 10.1007/s11434-011-4771-x Peng, 2015, Precambrian mafic dyke swarms in the North China Craton and their geological implications, Sci. China Earth Sci., 58, 649, 10.1007/s11430-014-5026-x Piper, 2011, Palaeomagnetism of Precambrian dyke swarms in the North China Shield: the ∼1.8 Ga LIP event and crustal consolidation in late Palaeoproterozoic times, J. Asian Earth Sci., 41, 504, 10.1016/j.jseaes.2011.03.010 Pirajno, 2015, Mantle plumes, supercontinents, intracontinental rifting and mineral systems, Precambrian Res., 259, 243, 10.1016/j.precamres.2014.12.016 Pirajno, 2013 Pollard, 1987, Elementary fracture mechanism applied to the structural interpretation of dykes [M]//Mafic dyke swarms, Geol. Assoc. Can., 34, 5 Qureshy, 1968, Gravity anomalies and the Godavari rift, India, Geol. Soc. Am. Bull., 79, 1221, 10.1130/0016-7606(1968)79[1221:GAATGR]2.0.CO;2 Ramachandra, 1994, 183 Ramsay, 1967 Regenauer-Lieb, 2006, The effect of energy feedbacks on continental strength, Nature, 442, 67, 10.1038/nature04868 Reynolds, 2002, Tectonic forces controlling the regional intraplate stress field in continental Australia: results from new finite element modeling, J. Geophys. Res.: Solid Earth, 107, 1, 10.1029/2001JB000408 Richardson, 1979, Tectonic stress in the plates, Rev. Geophys., 17, 981, 10.1029/RG017i005p00981 Rogers, 2002, Configuration of Columbia, a mesoproterozoic supercontinent, Gondwana Res., 5, 5, 10.1016/S1342-937X(05)70883-2 Rogers, 2009, Tectonics and surface effects of the Columbia supercontinent, Gondwana Res., 15, 373, 10.1016/j.gr.2008.06.008 Saha, 2014, Proterozoic evolution of Eastern Dharwar and Bastar cratons, India – an overview of the intracratonic basins, craton margins and mobile belts, J. Asian Earth Sci., 91, 230, 10.1016/j.jseaes.2013.09.020 Saha, 2012, Palaeoproterozoic sedimentation in the Cuddapah Basin, south India and regional tectonics: a review, Geol. Soc. Lond. Spec. Publ., 365, 161, 10.1144/SP365.9 Santosh, 2009, The making and breaking of supercontinents: some speculations based on superplumes, super downwelling and the role of tectosphere, Gondwana Res., 15, 324, 10.1016/j.gr.2008.11.004 Santosh, 2010, Assembling North China Craton within the Columbia supercontinent: the role of double-sided subduction, Precambrian Res., 178, 149, 10.1016/j.precamres.2010.02.003 Schellart, 2003 Sengör, 1978, Relative timing of rifting and volcanism on Earth and its tectonic implications, Geophys. Res. Lett., 5, 419, 10.1029/GL005i006p00419 Sharma, 2009 Sun, 1985, 176 Turcotte, 1983, Mechanisms of active and passive rifting, Tectonophysics, 94, 39, 10.1016/0040-1951(83)90008-2 Turcotte, 2002 Turpeinen, 2015, Slip on normal faults induced by surface processes after the cessation of regional extension—insights from three-dimensional numerical modelling, Geomorphology, 237, 79, 10.1016/j.geomorph.2013.12.008 Wan, 2015, Paleoproterozoic high-pressure metamorphism in the northern North China Craton and implications for the Nuna supercontinent, Nat. Commun., 6, 10.1038/ncomms9344 Wan, 2012 Wang, 1980, A mathematical simulation for the pattern of seismic transference in North China, Acta Seismol. Sin., 2, 32 Wang, 1983, 201 Wang, 2007, LA-ICP-MS U-Pb zircon geochronology and geochemistry of Paleoproterozoic mafic dykes from western Shandong Province: implications for back-arc basin magmatism in the Eastern Block, North China Craton, Precambrian Res., 154, 107, 10.1016/j.precamres.2006.12.010 Wang, 2015, Late Paleoproterozoic geodynamics of the North China Craton: geochemical and zircon U–Pb–Hf records from a volcanic suite in the Yanliao rift, Gondwana Res., 27, 300, 10.1016/j.gr.2013.10.004 Watts, 2001 Wilde, 2002, Development of the North China Craton during the Late Archaean and its final amalgamation at 1.8 Ga; some speculations on its position within a global Paleoproterozoic Supercontinent, Gondwana Res., 5, 85, 10.1016/S1342-937X(05)70892-3 Wu, 1986, 53 Xia, 2013, Late Paleoproterozoic rift-related magmatic rocks in the North China Craton: geological records of rifting in the Columbia supercontinent, Earth Sci. Rev., 125, 69, 10.1016/j.earscirev.2013.06.004 Xiang, 2012, Emplacement age of the gabbro-diabase dike in the Hongmen scenic region of Mount Tai, Shandong Province, North China: baddeleyite U-Pb precise dating, Acta Petrol. Sin., 28, 2831 Xu, 2008, Geochemical characteristics and sedimentary environments of cherts from the Paleoproterozoic Xiong’er group in the southern part of the north china block, Acta Sedimentol. Sin., 56, 355 Yang, 2011, Mesoproterozoic mafic and carbonatitic dykes from the northern margin of the North China Craton: implications for the final breakup of Columbia supercontinent, Tectonophysics, 498, 1, 10.1016/j.tecto.2010.11.015 Zhai, 2011, The early Precambrian odyssey of the North China Craton: a synoptic overview, Gondwana Res., 20, 6, 10.1016/j.gr.2011.02.005 Zhai, 2000, The amalgamation of the supercontinent of North China Craton at the end of Neo-Archaean and its breakup during late Palaeoproterozoic and Meso-Proterozoic, Sci. China Ser. D: Earth Sci., 43, 219, 10.1007/BF02911947 Zhai, 2005, Neoarchean to Paleoproterozoic continental evolution and tectonic history of the North China Craton: a review, J. Asian Earth Sci., 24, 547, 10.1016/j.jseaes.2004.01.018 Zhai, 2015, Late Paleoproterozoic–Neoproterozoic multi-rifting events in the North China Craton and their geological significance: a study advance and review, Tectonophysics, 662, 153, 10.1016/j.tecto.2015.01.019 Zhan, 2016, Stress development in heterogenetic lithosphere: insights into earthquake processes in the New Madrid Seismic Zone, Tectonophysics, 671, 56, 10.1016/j.tecto.2016.01.016 Zhang, 2012, Pre-Rodinia supercontinent Nuna shaping up: a global synthesis with new paleomagnetic results from North China, Earth Planet. Sci. Lett., 353, 145, 10.1016/j.epsl.2012.07.034 Zhao, 2012, Precambrian geology of China, Precambrian Res., 222, 13, 10.1016/j.precamres.2012.09.017 Zhao, 2000, Metamorphism of basement rocks in the Central Zone of the North China Craton: implications for Paleoproterozoic tectonic evolution, Precambrian Res., 103, 55, 10.1016/S0301-9268(00)00076-0 Zhao, 2001, Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P–T path constraints and tectonic evolution, Precambrian Res., 107, 45, 10.1016/S0301-9268(00)00154-6 Zhao, 2002, Review of global 2. 1-1.8 Ga orogens: implications for a pre-Rodinia supercontinent, Earth Sci. Rev., 59, 125, 10.1016/S0012-8252(02)00073-9 Zhao, 2002, Paleoproterozoic rift-related volcanism of the Xiong'er Group, North China craton: implications for the breakup of Columbia, Int. Geol. Rev., 44, 336, 10.2747/0020-6814.44.4.336 Zhao, 2003, Major tectonic units of the North China Craton and their Paleoproterozoic assembly, Sci. China Ser. D: Earth Sci., 46, 23, 10.1360/03yd9003 Zhao, 2003, Assembly, accretion and breakup of the Paleo-Mesoproterozoic Columbia supercontinent: records in the North China Craton, Gondwana Res., 6, 417, 10.1016/S1342-937X(05)70996-5 Zhao, 2004, A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup, Earth Sci. Rev., 67, 91, 10.1016/j.earscirev.2004.02.003 Zhao, 2005, Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited, Precambrian Res., 136, 177, 10.1016/j.precamres.2004.10.002 Zhao, 2009, The Xiong'er volcanic belt at the southern margin of the North China Craton: petrographic and geochemical evidence for its outboard position in the Paleo-Mesoproterozoic Columbia Supercontinent, Gondwana Res., 16, 170, 10.1016/j.gr.2009.02.004 Zhao, 2011, Assembly, accretion, and break-up of the Palaeo-Mesoproterozoic Columbia supercontinent: record in the North China Craton revisited, Int. Geol. Rev., 53, 1331, 10.1080/00206814.2010.527631 Zhou, 1999, Feature and tectono-paleogeography evolution of the southern margin of the north china continent in Mesoproterozoic and Neoproterozoic era, Geoscience, 13, 261 Zhou, 1996, The middle and late Proterozoic geological evolution of north Qinling with discussion on some related problems, Geol. J. Univ., 2, 166