Mechanism of Paleo-Mesoproterozoic rifts related to breakup of Columbia supercontinent: A paleostress field modeling
Tài liệu tham khảo
Belica, 2014, Paleoproterozoic mafic dyke swarms from the Dharwar craton; paleomagnetic poles for India from 2.37 to 1.88Ga and rethinking the Columbia supercontinent, Precambrian Res., 244, 100, 10.1016/j.precamres.2013.12.005
Bott, 1992, The stress regime associated with continental break-up, Geol. Soc. Lond. Spec. Publ., 68, 125, 10.1144/GSL.SP.1992.068.01.08
Burov, 2014, Asymmetric three-dimensional topography over mantle plumes, Nature, 513, 85, 10.1038/nature13703
Burov, 2011, 693
Chatterjee, 2002, Effects of rock mechanical properties on local stress field of the Mahanadi basin, India-results from finite element modeling, Geophys. Res. Lett., 29, 28-1, 10.1029/2001GL013447
Chaudhuri, 2002, The Purana basins of southern cratonic province of India-a case for Mesoproterozoic fossil rifts, Gondwana Res., 5, 23, 10.1016/S1342-937X(05)70884-4
Chen, 2013, Paleomagnetism of ca. 1.35 Ga sills in northern North China Craton and implications for paleogeographic reconstruction of the Mesoproterozoic supercontinent, Precambrian Res., 228, 36, 10.1016/j.precamres.2013.01.011
Ding, 1998, A new method for quantitative prediction of tectonic fracture–two factors method, Oil Gas Geol., 19, 1
Diwu, 2014, Early Paleoproterozoic (2.45–2.20 Ga) magmatic activity during the period of global magmatic shutdown: implications for the crustal evolution of the southern North China Craton, Precambrian Res., 255, 627, 10.1016/j.precamres.2014.08.001
Eckert, 2014, Large©\scale mechanical buckle fold development and the initiation of tensile fractures, Geochem. Geophys. Geosyst., 15, 4570, 10.1002/2014GC005502
Eriksson, 1999, The 2.7–2.0 Ga volcano-sedimentary record of Africa, India and Australia: evidence for global and local changes in sea level and continental freeboard, Precambrian Res., 97, 269, 10.1016/S0301-9268(99)00035-2
Ernst, 2002, Maximum size and distribution in time and space of mantle plumes: evidence from large igneous provinces, J. Geodyn., 34, 309, 10.1016/S0264-3707(02)00025-X
Ernst, 2008
Fluent, 2012
Frehner, 2011, The neutral lines in buckle folds, J. Struct. Geol., 33, 1501, 10.1016/j.jsg.2011.07.005
French, 2010, Precise U–Pb dating of Paleoproterozoic mafic dyke swarms of the Dharwar craton, India: implications for the existence of the Neoarchean supercraton Sclavia, Precambrian Res., 183, 416, 10.1016/j.precamres.2010.05.003
French, 2008, 1891–1883Ma Southern Bastar–Cuddapah mafic igneous events, India: a newly recognized large igneous province, Precambrian Res., 160, 308, 10.1016/j.precamres.2007.08.005
Gessner, 2011, Hot lithosphere at Mount Isa: implications for Proterozoic tectonics and mineralisation, Aust. J. Earth Sci., 58, 875, 10.1080/08120099.2011.571284
Guo, 2005, Sm-Nd and SHRIMP U-Pb zircon geochronology of high-pressure granulites in the Sanggan area, North China Craton: timing of Paleoproterozoic continental collision, J. Asian Earth Sci., 24, 629, 10.1016/j.jseaes.2004.01.017
Guo, 2012, UHT sapphirine granulite metamorphism at 1.93–1.92 Ga caused by gabbronorite intrusions: implications for tectonic evolution of the northern margin of the North China Craton, Precambrian Res., 222, 124, 10.1016/j.precamres.2011.07.020
Halls, 2000, A precisely dated Proterozoic palaeomagnetic pole from the North China craton, and its relevance to paleocontinental reconstruction, Geophys. J. Int., 143, 185, 10.1046/j.1365-246x.2000.00231.x
Halls, 2007, Paleomagnetism and U–Pb geochronology of easterly trending dykes in the Dharwar craton, India: feldspar clouding, radiating dyke swarms and the position of India at 2.37 Ga, Precambrian Res., 155, 47, 10.1016/j.precamres.2007.01.007
He, 2009, SHRIMP and LA-ICP-MS zircon geochronology of the Xiong’er volcanic rocks: implications for the Paleo-Mesoproterozoic evolution of the southern margin of the North China Craton, Precambrian Res., 168, 213, 10.1016/j.precamres.2008.09.011
Hou, 2014, Mesozoic-Cenozoic extension of the Bohai Sea: contribution to the destruction of North China Craton, Front. Earth Sci., 8, 202, 10.1007/s11707-014-0413-3
Hou, 2001, The tectonic evolution of Bohai Basin in Mesozoic and Cenozoic time, Acta Sci. Nat.-Univ. Pekin., 37, 845
Hou, 2005, The SHRIMP U-Pb chronology of mafic dyke swarms: a case study of Laiwu diabase dykes in western Shandong, Acta Petrol. Mineral., 24, 179
Hou, 2005, The precambrian basic dyke swarms in the western Shandong province, Acta Geol. Sin., 79, 190
Hou, 2006, Evidence for ∼1.8 Ga extension of the Eastern Block of the North China Craton from SHRIMP U–Pb dating of mafic dyke swarms in Shandong Province, J. Asian Earth Sci., 27, 392, 10.1016/j.jseaes.2005.05.001
Hou, 2006, Late Paleoproterozoic extension and a paleostress field reconstruction of the North China Craton, Tectonophysics, 422, 89, 10.1016/j.tecto.2006.05.008
Hou, 2008, Geochemical constraints on the tectonic environment of the Late Paleoproterozoic mafic dyke swarms in the North China Craton, Gondwana Res., 13, 103, 10.1016/j.gr.2007.06.005
Hou, 2008, Configuration of the Late Paleoproterozoic Columbia supercontinent: insights from radiating mafic dyke swarms, Gondwana Res., 14, 395, 10.1016/j.gr.2008.01.010
Hou, 2008, Tectonic constraints on 1.3–1.2 Ga final breakup of Columbia supercontinent from a giant radiating dyke swarm, Gondwana Res., 14, 561, 10.1016/j.gr.2008.03.005
Hou, 2010, Mechanics of the giant radiating Mackenzie dyke swarm: a paleostress field modeling, J. Geophys. Res.: Solid Earth, 115, 1448, 10.1029/2007JB005475
Hou, 2010, The Late Triassic and Late Jurassic stress fields and tectonic transmission of North China craton, J. Geodyn., 50, 318, 10.1016/j.jog.2009.11.007
Hou, 2012, Mechanism for three types of mafic dyke swarms, Geosci. Front., 3, 217, 10.1016/j.gsf.2011.10.003
Hu, 2013, SHRIMP U-Pb zircon dating of the Ordos Basin basement and its tectonic significance, Chin. Sci. Bull., 58, 118, 10.1007/s11434-012-5274-0
Hu, 2014, Depositional age, provenance and tectonic setting of the Proterozoic Ruyang Group, southern margin of the North China Craton, Precambrian Res., 246, 296, 10.1016/j.precamres.2014.03.013
Ju, 2013, Mechanics of mafic dyke swarms in the Deccan Large Igneous Province: palaeostress field modelling, J. Geodyn., 66, 79, 10.1016/j.jog.2013.02.002
Koptev, 2015, Dual continental rift systems generated by plume-lithosphere interaction, Nat. Geosci., 8, 388, 10.1038/ngeo2401
Kröner, 2005, Age and evolution of a late Archean to Paleoproterozoic upper to lower crustal section in the Wutaishan/Hengshan/Fuping terrain of northern China, J. Asian Earth Sci., 24, 577, 10.1016/j.jseaes.2004.01.001
Kumar, 2012, A Paleoproterozoic giant radiating dyke swarm in the Dharwar Craton, southern India, Geochem. Geophys. Geosyst., 13, 10.1029/2011GC003926
Kusky, 2003, Paleoproterozoic tectonic evolution of the north China craton, J. Asian Earth Sci., 22, 383, 10.1016/S1367-9120(03)00071-3
Kusky, 2007, The paleoproterozoic north Hebei orogen: north China craton's collisional suture with the Columbia supercontinent, Gondwana Res., 12, 4, 10.1016/j.gr.2006.11.012
Lan, 2014, Diagenetic xenotime age constraints on the Sanjiaotang Formation, Luoyu Group, southern margin of the North China Craton: implications for regional stratigraphic correlation and early evolution of eukaryotes, Precambrian Res., 251, 21, 10.1016/j.precamres.2014.06.012
Lesne, 1998, Finite element modelling of crustal deformation in the Baikal rift zone: new insights into the active–passive rifting debate, Tectonophysics, 289, 327, 10.1016/S0040-1951(98)00004-3
Li, 2012, Mesozoic basins in eastern China and their bearing on the deconstruction of the North China Craton, J. Asian Earth Sci., 47, 64, 10.1016/j.jseaes.2011.06.008
Li, 2015, Nature of 1800–1600Ma mafic dyke swarms in the North China Craton: implications for the rejuvenation of the sub-continental lithospheric mantle, Precambrian Res., 257, 114, 10.1016/j.precamres.2014.12.002
Liao, 2014, Influence of lithospheric mantle stratification on craton extension: insight from two-dimensional thermo-mechanical modeling, Tectonophysics, 631, 50, 10.1016/j.tecto.2014.01.020
Liao, 2013, Layered structure of the lithospheric mantle changes dynamics of craton extension, Geophys. Res. Lett., 40, 5861, 10.1002/2013GL058081
Liu, 1999, 42
Liu, 2004, Archean geodynamics in the Central Zone, North China Craton: constraints from geochemistry of two contrasting series of granitoids in the Fuping and Wutai complexes, Precambrian Res., 130, 229, 10.1016/j.precamres.2003.12.001
Liu, 2006, Th–U–Pb monazite geochronology of the Lüliang and Wutai Complexes: constraints on the tectonothermal evolution of the Trans-North China Orogen, Precambrian Res., 148, 205, 10.1016/j.precamres.2006.04.003
Liu, 2011, Zircon U–Pb chronology of the Jianping Complex: implications for the Precambrian crustal evolution history of the northern margin of North China Craton, Gondwana Res., 20, 48, 10.1016/j.gr.2011.01.003
Logan, D.L., 2007. A First Course in the Finite Element Method, 4th edition, Brooks/Cole, Pacific Grove, CA.
Lu, 2008, Precambrian metamorphic basement and sedimentary cover of the North China Craton: a review, Precambrian Res., 160, 77, 10.1016/j.precamres.2007.04.017
Mazumder, 2000, A commentary on the tectono-sedimentary record of the pre-2.0 Ga continental growth of India vis-a-vis a possible pre-Gondwana Afro-Indian supercontinent, J. Afr. Earth Sci., 30, 201, 10.1016/S0899-5362(00)00016-6
Meert, 2010, Precambrian crustal evolution of Peninsular India: a 3.0 billion year odyssey, J. Asian Earth Sci., 39, 483, 10.1016/j.jseaes.2010.04.026
Meert, 2011, Preliminary report on the paleomagnetism of 1.88 Ga dykes from the Bastar and Dharwar cratons, Peninsular India, Gondwana Res., 20, 335, 10.1016/j.gr.2011.03.005
Meng, 2011, Stratigraphic and sedimentary records of the rift to drift evolution of the northern North China craton at the Paleo-to Mesoproterozoic transition, Gondwana Res., 20, 205, 10.1016/j.gr.2010.12.010
Murthy, 1995, Proterozoic mafic dykes in southern peninsular India: a review, Geol. Soc. India Memoir, 33, 81
Nagaraja Rao, 1987, Stratigraphy, structure and evolution of the Cuddapah basin, Mem. Geol. Soc. India, 6, 33
Peng, 2005, Geochronological constraints on the Paleoproterozoic evolution of the North China Craton: SHRIMP zircon ages of different types of mafic dikes, Int. Geol. Rev., 47, 492, 10.2747/0020-6814.47.5.492
Peng, 2007, Nature of mantle source contributions and crystal differentiation in the petrogenesis of the 1.78 Ga mafic dykes in the central North China craton, Gondwana Res., 12, 29, 10.1016/j.gr.2006.10.022
Peng, 2008, A 1.78 Ga large igneous province in the North China craton: the Xiong'er Volcanic Province and the North China dyke swarm, Lithos, 101, 260, 10.1016/j.lithos.2007.07.006
Peng, 2012, Age of the Miyun dyke swarm: constraints on the maximum depositional age of the Changcheng System, Chin. Sci. Bull., 57, 105, 10.1007/s11434-011-4771-x
Peng, 2015, Precambrian mafic dyke swarms in the North China Craton and their geological implications, Sci. China Earth Sci., 58, 649, 10.1007/s11430-014-5026-x
Piper, 2011, Palaeomagnetism of Precambrian dyke swarms in the North China Shield: the ∼1.8 Ga LIP event and crustal consolidation in late Palaeoproterozoic times, J. Asian Earth Sci., 41, 504, 10.1016/j.jseaes.2011.03.010
Pirajno, 2015, Mantle plumes, supercontinents, intracontinental rifting and mineral systems, Precambrian Res., 259, 243, 10.1016/j.precamres.2014.12.016
Pirajno, 2013
Pollard, 1987, Elementary fracture mechanism applied to the structural interpretation of dykes [M]//Mafic dyke swarms, Geol. Assoc. Can., 34, 5
Qureshy, 1968, Gravity anomalies and the Godavari rift, India, Geol. Soc. Am. Bull., 79, 1221, 10.1130/0016-7606(1968)79[1221:GAATGR]2.0.CO;2
Ramachandra, 1994, 183
Ramsay, 1967
Regenauer-Lieb, 2006, The effect of energy feedbacks on continental strength, Nature, 442, 67, 10.1038/nature04868
Reynolds, 2002, Tectonic forces controlling the regional intraplate stress field in continental Australia: results from new finite element modeling, J. Geophys. Res.: Solid Earth, 107, 1, 10.1029/2001JB000408
Richardson, 1979, Tectonic stress in the plates, Rev. Geophys., 17, 981, 10.1029/RG017i005p00981
Rogers, 2002, Configuration of Columbia, a mesoproterozoic supercontinent, Gondwana Res., 5, 5, 10.1016/S1342-937X(05)70883-2
Rogers, 2009, Tectonics and surface effects of the Columbia supercontinent, Gondwana Res., 15, 373, 10.1016/j.gr.2008.06.008
Saha, 2014, Proterozoic evolution of Eastern Dharwar and Bastar cratons, India – an overview of the intracratonic basins, craton margins and mobile belts, J. Asian Earth Sci., 91, 230, 10.1016/j.jseaes.2013.09.020
Saha, 2012, Palaeoproterozoic sedimentation in the Cuddapah Basin, south India and regional tectonics: a review, Geol. Soc. Lond. Spec. Publ., 365, 161, 10.1144/SP365.9
Santosh, 2009, The making and breaking of supercontinents: some speculations based on superplumes, super downwelling and the role of tectosphere, Gondwana Res., 15, 324, 10.1016/j.gr.2008.11.004
Santosh, 2010, Assembling North China Craton within the Columbia supercontinent: the role of double-sided subduction, Precambrian Res., 178, 149, 10.1016/j.precamres.2010.02.003
Schellart, 2003
Sengör, 1978, Relative timing of rifting and volcanism on Earth and its tectonic implications, Geophys. Res. Lett., 5, 419, 10.1029/GL005i006p00419
Sharma, 2009
Sun, 1985, 176
Turcotte, 1983, Mechanisms of active and passive rifting, Tectonophysics, 94, 39, 10.1016/0040-1951(83)90008-2
Turcotte, 2002
Turpeinen, 2015, Slip on normal faults induced by surface processes after the cessation of regional extension—insights from three-dimensional numerical modelling, Geomorphology, 237, 79, 10.1016/j.geomorph.2013.12.008
Wan, 2015, Paleoproterozoic high-pressure metamorphism in the northern North China Craton and implications for the Nuna supercontinent, Nat. Commun., 6, 10.1038/ncomms9344
Wan, 2012
Wang, 1980, A mathematical simulation for the pattern of seismic transference in North China, Acta Seismol. Sin., 2, 32
Wang, 1983, 201
Wang, 2007, LA-ICP-MS U-Pb zircon geochronology and geochemistry of Paleoproterozoic mafic dykes from western Shandong Province: implications for back-arc basin magmatism in the Eastern Block, North China Craton, Precambrian Res., 154, 107, 10.1016/j.precamres.2006.12.010
Wang, 2015, Late Paleoproterozoic geodynamics of the North China Craton: geochemical and zircon U–Pb–Hf records from a volcanic suite in the Yanliao rift, Gondwana Res., 27, 300, 10.1016/j.gr.2013.10.004
Watts, 2001
Wilde, 2002, Development of the North China Craton during the Late Archaean and its final amalgamation at 1.8 Ga; some speculations on its position within a global Paleoproterozoic Supercontinent, Gondwana Res., 5, 85, 10.1016/S1342-937X(05)70892-3
Wu, 1986, 53
Xia, 2013, Late Paleoproterozoic rift-related magmatic rocks in the North China Craton: geological records of rifting in the Columbia supercontinent, Earth Sci. Rev., 125, 69, 10.1016/j.earscirev.2013.06.004
Xiang, 2012, Emplacement age of the gabbro-diabase dike in the Hongmen scenic region of Mount Tai, Shandong Province, North China: baddeleyite U-Pb precise dating, Acta Petrol. Sin., 28, 2831
Xu, 2008, Geochemical characteristics and sedimentary environments of cherts from the Paleoproterozoic Xiong’er group in the southern part of the north china block, Acta Sedimentol. Sin., 56, 355
Yang, 2011, Mesoproterozoic mafic and carbonatitic dykes from the northern margin of the North China Craton: implications for the final breakup of Columbia supercontinent, Tectonophysics, 498, 1, 10.1016/j.tecto.2010.11.015
Zhai, 2011, The early Precambrian odyssey of the North China Craton: a synoptic overview, Gondwana Res., 20, 6, 10.1016/j.gr.2011.02.005
Zhai, 2000, The amalgamation of the supercontinent of North China Craton at the end of Neo-Archaean and its breakup during late Palaeoproterozoic and Meso-Proterozoic, Sci. China Ser. D: Earth Sci., 43, 219, 10.1007/BF02911947
Zhai, 2005, Neoarchean to Paleoproterozoic continental evolution and tectonic history of the North China Craton: a review, J. Asian Earth Sci., 24, 547, 10.1016/j.jseaes.2004.01.018
Zhai, 2015, Late Paleoproterozoic–Neoproterozoic multi-rifting events in the North China Craton and their geological significance: a study advance and review, Tectonophysics, 662, 153, 10.1016/j.tecto.2015.01.019
Zhan, 2016, Stress development in heterogenetic lithosphere: insights into earthquake processes in the New Madrid Seismic Zone, Tectonophysics, 671, 56, 10.1016/j.tecto.2016.01.016
Zhang, 2012, Pre-Rodinia supercontinent Nuna shaping up: a global synthesis with new paleomagnetic results from North China, Earth Planet. Sci. Lett., 353, 145, 10.1016/j.epsl.2012.07.034
Zhao, 2012, Precambrian geology of China, Precambrian Res., 222, 13, 10.1016/j.precamres.2012.09.017
Zhao, 2000, Metamorphism of basement rocks in the Central Zone of the North China Craton: implications for Paleoproterozoic tectonic evolution, Precambrian Res., 103, 55, 10.1016/S0301-9268(00)00076-0
Zhao, 2001, Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P–T path constraints and tectonic evolution, Precambrian Res., 107, 45, 10.1016/S0301-9268(00)00154-6
Zhao, 2002, Review of global 2. 1-1.8 Ga orogens: implications for a pre-Rodinia supercontinent, Earth Sci. Rev., 59, 125, 10.1016/S0012-8252(02)00073-9
Zhao, 2002, Paleoproterozoic rift-related volcanism of the Xiong'er Group, North China craton: implications for the breakup of Columbia, Int. Geol. Rev., 44, 336, 10.2747/0020-6814.44.4.336
Zhao, 2003, Major tectonic units of the North China Craton and their Paleoproterozoic assembly, Sci. China Ser. D: Earth Sci., 46, 23, 10.1360/03yd9003
Zhao, 2003, Assembly, accretion and breakup of the Paleo-Mesoproterozoic Columbia supercontinent: records in the North China Craton, Gondwana Res., 6, 417, 10.1016/S1342-937X(05)70996-5
Zhao, 2004, A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup, Earth Sci. Rev., 67, 91, 10.1016/j.earscirev.2004.02.003
Zhao, 2005, Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited, Precambrian Res., 136, 177, 10.1016/j.precamres.2004.10.002
Zhao, 2009, The Xiong'er volcanic belt at the southern margin of the North China Craton: petrographic and geochemical evidence for its outboard position in the Paleo-Mesoproterozoic Columbia Supercontinent, Gondwana Res., 16, 170, 10.1016/j.gr.2009.02.004
Zhao, 2011, Assembly, accretion, and break-up of the Palaeo-Mesoproterozoic Columbia supercontinent: record in the North China Craton revisited, Int. Geol. Rev., 53, 1331, 10.1080/00206814.2010.527631
Zhou, 1999, Feature and tectono-paleogeography evolution of the southern margin of the north china continent in Mesoproterozoic and Neoproterozoic era, Geoscience, 13, 261
Zhou, 1996, The middle and late Proterozoic geological evolution of north Qinling with discussion on some related problems, Geol. J. Univ., 2, 166