Mechanism of MnO2 nanorods toxicity in marine microalgae Chlorella sorokiniana during long-term exposure
Tài liệu tham khảo
Adochite, 2020, Aquatic toxicity of photocatalyst nanoparticles to green microalgae Chlorella vulgaris, Water, 13, 77, 10.3390/w13010077
Angel, 2015, On the mechanism of nanoparticulate CeO2 toxicity to freshwater algae, Aquat. Toxicol., 168, 90, 10.1016/j.aquatox.2015.09.015
Bajguz, 2011, Suppression of Chlorella vulgaris growth by cadmium, lead, and copper stress and its restoration by endogenous brassinolide, Arch. Environ. Contam. Toxicol., 60, 406, 10.1007/s00244-010-9551-0
Baranov, 2004, Bicarbonate is a native cofactor for assembly of the manganese cluster of the photosynthetic water oxidizing complex. Kinetics of reconstitution of O2 evolution by photoactivation, Biochemistry, 43, 2070, 10.1021/bi034858n
Battah, 2015, Effect of Mn2+, Co2+ and H2O2 on biomass and lipids of the green microalga Chlorella vulgaris as a potential candidate for biodiesel production, Ann. Microbiol., 65, 155, 10.1007/s13213-014-0846-7
Bhuvaneshwari, 2018, A review on ecotoxicity of zinc oxide nanoparticles on freshwater algae, 191
Bradford, 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72, 248, 10.1016/0003-2697(76)90527-3
Bundschuh, 2016, Effects of nanoparticles in fresh waters: risks, mechanisms and interactions, Freshw. Biol., 61, 2185, 10.1111/fwb.12701
Chen, 2018, Toxicity of Co nanoparticles on three species of marine microalgae, Environ. Pollut., 236, 454, 10.1016/j.envpol.2018.01.081
Dauda, 2017, Toxicity of titanium dioxide nanoparticles to Chlorella vulgaris Beyerinck (Beijerinck) 1890 (Trebouxiophyceae, Chlorophyta) under changing nitrogen conditions, Aquat. Toxicol., 187, 108, 10.1016/j.aquatox.2017.03.020
DuBois, 1956, Colorimetric method for determination of sugars and related substances, Anal. Chem., 28, 350, 10.1021/ac60111a017
Fazelian, 2019, Cytotoxic impacts of CuO nanoparticles on the marine microalga Nannochloropsis oculata, Environ. Sci. Pollut. Res. Int., 26, 17499, 10.1007/s11356-019-05130-0
Hamidian, 2021, Potential of Chlorella sorokiniana cultivated in dairy wastewater for bioenergy and biodiesel production, BioEnergy Res.
Hartmann, 2010, Algal testing of titanium dioxide nanoparticles--testing considerations, inhibitory effects and modification of cadmium bioavailability, Toxicology, 269, 190, 10.1016/j.tox.2009.08.008
Hou, 2018, Toxic effects of different types of zinc oxide nanoparticles on algae, plants, invertebrates, vertebrates and microorganisms, Chemosphere, 193, 852, 10.1016/j.chemosphere.2017.11.077
Hu, 2018, Effect of TiO2 nanoparticle aggregation on marine microalgae Isochrysis galbana, J. Environ. Sci. (China), 66, 208, 10.1016/j.jes.2017.05.026
Huang, 2017, The toxicity of nanoparticles depends on multiple molecular and physicochemical mechanisms, Int. J. Mol. Sci., 18, 2702, 10.3390/ijms18122702
Jiang, 2008, Does nanoparticle activity depend upon size and crystal phase?, Nanotoxicology, 2, 33, 10.1080/17435390701882478
Kaliamurthi, 2019, The relationship between Chlorella sp. and zinc oxide nanoparticles: changes in biochemical, oxygen evolution, and lipid production ability, Process Biochem., 85, 43, 10.1016/j.procbio.2019.06.005
Khoshnamvand, 2020, Impacts of organic matter on the toxicity of biosynthesized silver nanoparticles to green microalgae Chlorella vulgaris, Environ. Res., 185, 10.1016/j.envres.2020.109433
Kim, 2016, Magnesium aminoclay enhances lipid production of mixotrophic Chlorella sp. KR-1 while reducing bacterial populations, Bioresour. Technol., 219, 608, 10.1016/j.biortech.2016.08.034
Klin, 2018, Characteristics of the growth rate and lipid production in fourteen strains of Baltic green microalgae, Oceanol. Hydrobiol. Stud., 47, 10, 10.1515/ohs-2018-0002
Kobayashi, 2013, Characterization of three Chlorella sorokiniana strains in anaerobic digested effluent from cattle manure, Bioresour. Technol., 150, 377, 10.1016/j.biortech.2013.10.032
Liang, 2020, Toxicity of metals and metallic nanoparticles on nutritional properties of microalgae, Water, Air, Soil Pollut., 231, 52, 10.1007/s11270-020-4413-5
Lichtenthaler, 2001, Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy, Curr. Protoc. Food Anal. Chem., 1, 10.1002/0471142913.faf0403s01
Lone, 2013, Characterization of tolerance limit in Spirulina platensis in relation to nanoparticles, Water, Air, Soil Pollut., 224, 1670, 10.1007/s11270-013-1670-6
Mahana, 2021, Accumulation and cellular toxicity of engineered metallic nanoparticle in freshwater microalgae: current status and future challenges, Ecotoxicol. Environ. Saf., 208, 10.1016/j.ecoenv.2020.111662
Matouke, 2018, Binary effect of titanium dioxide nanoparticles (nTio2) and phosphorus on microalgae (Chlorella ’Ellipsoides Gerneck, 1907), Aquat. Toxicol., 198, 40, 10.1016/j.aquatox.2018.02.009
Melegari, 2013, Evaluation of toxicity and oxidative stress induced by copper oxide nanoparticles in the green alga Chlamydomonas reinhardtii, Aquat. Toxicol., 142–143, 431, 10.1016/j.aquatox.2013.09.015
Metzler, 2012, Responses of algal cells to engineered nanoparticles measured as algal cell population, chlorophyll a, and lipid peroxidation: effect of particle size and type, J. Nanotechnol., 1, 10.1155/2012/237284
Morelli, 2018, TiO2 nanoparticles in seawater: aggregation and interactions with the green alga Dunaliella tertiolecta, Ecotoxicol. Environ. Saf., 148, 184, 10.1016/j.ecoenv.2017.10.024
Nguyen, 2020, Microalgal ecotoxicity of nanoparticles: an updated review, Ecotoxicol. Environ. Saf., 201, 10.1016/j.ecoenv.2020.110781
Nogueira, 2015, The effects of graphene oxide on green algae Raphidocelis subcapitata, Aquat. Toxicol., 166, 29, 10.1016/j.aquatox.2015.07.001
Ouyang, 2012, Effects of five heavy metals at sub-lethal concentrations on the growth and photosynthesis of Chlorella vulgaris, Chin. Sci. Bull., 57, 3362, 10.1007/s11434-012-5366-x
Pham, 2019, Effect of silver nanoparticles on tropical freshwater and marine microalgae, J. Chem., 1
Romero, 2020, Physiological and morphological responses of green microalgae Chlorella vulgaris to silver nanoparticles, Environ. Res., 189, 10.1016/j.envres.2020.109857
Roy, 2016, Differential effects of P25 TiO2 nanoparticles on freshwater green microalgae: chlorella and Scenedesmus species, Aquat. Toxicol., 176, 161, 10.1016/j.aquatox.2016.04.021
Salari, 2020, Facile template-free synthesis of new α-MnO2 nanorod/silver iodide p-n junction nanocomposites with high photocatalytic performance, New J. Chem., 44, 7401, 10.1039/D0NJ01033B
Samei, 2019, The impact of morphology and size of zinc oxide nanoparticles on its toxicity to the freshwater microalga, Raphidocelis subcapitata, Environ. Sci. Pollut. Res. Int., 26, 2409, 10.1007/s11356-018-3787-z
Saxena, 2020, Toxicity evaluation of iron oxide nanoparticles and accumulation by microalgae Coelastrella terrestris, Environ. Sci. Pollut. Res. Int., 27, 19650, 10.1007/s11356-020-08441-9
Sendra, 2018, Is the cell wall of marine phytoplankton a protective barrier or a nanoparticle interaction site? Toxicological responses of Chlorella autotrophica and Dunaliella salina to Ag and CeO2 nanoparticles, Ecol. Indicat., 95, 1053, 10.1016/j.ecolind.2017.08.050
Sendra, 2017, Toxicity of TiO2, in nanoparticle or bulk form to freshwater and marine microalgae under visible light and UV-A radiation, Environ. Pollut., 227, 39, 10.1016/j.envpol.2017.04.053
Sendra, 2017, Direct and indirect effects of silver nanoparticles on freshwater and marine microalgae (Chlamydomonas reinhardtii and Phaeodactylum tricornutum), Chemosphere, 179, 279, 10.1016/j.chemosphere.2017.03.123
Sibi, 2017, Metal nanoparticle triggered growth and lipid production in Chlorella vulgaris, Int. J. Sci. Res Env. Sci. Toxicol., 2, 1
Smythers, 2019, Chlorella vulgaris bioaccumulates excess manganese up to 55× under photomixotrophic conditions, Algal Res., 43, 10.1016/j.algal.2019.101641
Sobańska, 2021, Applications and biological activity of nanoparticles of manganese and manganese oxides in in Vitro and in Vivo models, Nanomaterials, 11, 1084, 10.3390/nano11051084
Sørensen, 2016, A multimethod approach for investigating algal toxicity of platinum nanoparticles, Environ. Sci. Technol., 50, 10635, 10.1021/acs.est.6b01072
Suman, 2015, Evaluation of zinc oxide nanoparticles toxicity on marine algae chlorella vulgaris through flow cytometric, cytotoxicity and oxidative stress analysis, Ecotoxicol. Environ. Saf., 113, 23, 10.1016/j.ecoenv.2014.11.015
Thaipong, 2006, Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts, J. Food Compos. Anal., 19, 669, 10.1016/j.jfca.2006.01.003
Thiagarajan, 2019, Diminishing bioavailability and toxicity of P25 TiO2 NPs during continuous exposure to marine algae Chlorella sp, Chemosphere, 233, 363, 10.1016/j.chemosphere.2019.05.270
Vargas-Estrada, 2020, Role of nanoparticles on microalgal cultivation: a review, Fuel, 280, 10.1016/j.fuel.2020.118598
Walters, 2016, Nanotoxicology: a review
Wang, 2016, TiO2 nanoparticles in the marine environment: physical effects responsible for the toxicity on algae Phaeodactylum tricornutum, Sci. Total Environ., 565, 818, 10.1016/j.scitotenv.2016.03.164
Zaitseva, 2019, Toxicologic characteristics of nanodisperse manganese oxide: physical-chemical properties, biological accumulation, and morphological-functional properties at various exposure types
Zamani, 2014, Evaluation of total reducing capacity in three Dunaliella salina (Dunal) Teodoresco isolates, J. Appl. Phycol., 26, 369, 10.1007/s10811-013-0074-8
Zamani, 2014, Influence of PbS nanoparticle polymer coating on their aggregation behavior and toxicity to the green algae Dunaliella salina, Aquat. Toxicol., 154, 176, 10.1016/j.aquatox.2014.05.012
Zinicovscaia, 2017, Selenium uptake and assessment of the biochemical changes in Arthrospira (Spirulina) platensis biomass during the synthesis of selenium nanoparticles, Can. J. Microbiol., 63, 27, 10.1139/cjm-2016-0339