Mechanism of MnO2 nanorods toxicity in marine microalgae Chlorella sorokiniana during long-term exposure

Marine Environmental Research - Tập 179 - Trang 105669 - 2022
Fatemeh Khalifeh1, Hadi Salari2, Hajar Zamani1
1Department of Biology, School of Science, Shiraz University, Shiraz, Iran
2Department of Chemistry, School of Science, Shiraz University, Shiraz, Iran

Tài liệu tham khảo

Adochite, 2020, Aquatic toxicity of photocatalyst nanoparticles to green microalgae Chlorella vulgaris, Water, 13, 77, 10.3390/w13010077 Angel, 2015, On the mechanism of nanoparticulate CeO2 toxicity to freshwater algae, Aquat. Toxicol., 168, 90, 10.1016/j.aquatox.2015.09.015 Bajguz, 2011, Suppression of Chlorella vulgaris growth by cadmium, lead, and copper stress and its restoration by endogenous brassinolide, Arch. Environ. Contam. Toxicol., 60, 406, 10.1007/s00244-010-9551-0 Baranov, 2004, Bicarbonate is a native cofactor for assembly of the manganese cluster of the photosynthetic water oxidizing complex. Kinetics of reconstitution of O2 evolution by photoactivation, Biochemistry, 43, 2070, 10.1021/bi034858n Battah, 2015, Effect of Mn2+, Co2+ and H2O2 on biomass and lipids of the green microalga Chlorella vulgaris as a potential candidate for biodiesel production, Ann. Microbiol., 65, 155, 10.1007/s13213-014-0846-7 Bhuvaneshwari, 2018, A review on ecotoxicity of zinc oxide nanoparticles on freshwater algae, 191 Bradford, 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72, 248, 10.1016/0003-2697(76)90527-3 Bundschuh, 2016, Effects of nanoparticles in fresh waters: risks, mechanisms and interactions, Freshw. Biol., 61, 2185, 10.1111/fwb.12701 Chen, 2018, Toxicity of Co nanoparticles on three species of marine microalgae, Environ. Pollut., 236, 454, 10.1016/j.envpol.2018.01.081 Dauda, 2017, Toxicity of titanium dioxide nanoparticles to Chlorella vulgaris Beyerinck (Beijerinck) 1890 (Trebouxiophyceae, Chlorophyta) under changing nitrogen conditions, Aquat. Toxicol., 187, 108, 10.1016/j.aquatox.2017.03.020 DuBois, 1956, Colorimetric method for determination of sugars and related substances, Anal. Chem., 28, 350, 10.1021/ac60111a017 Fazelian, 2019, Cytotoxic impacts of CuO nanoparticles on the marine microalga Nannochloropsis oculata, Environ. Sci. Pollut. Res. Int., 26, 17499, 10.1007/s11356-019-05130-0 Hamidian, 2021, Potential of Chlorella sorokiniana cultivated in dairy wastewater for bioenergy and biodiesel production, BioEnergy Res. Hartmann, 2010, Algal testing of titanium dioxide nanoparticles--testing considerations, inhibitory effects and modification of cadmium bioavailability, Toxicology, 269, 190, 10.1016/j.tox.2009.08.008 Hou, 2018, Toxic effects of different types of zinc oxide nanoparticles on algae, plants, invertebrates, vertebrates and microorganisms, Chemosphere, 193, 852, 10.1016/j.chemosphere.2017.11.077 Hu, 2018, Effect of TiO2 nanoparticle aggregation on marine microalgae Isochrysis galbana, J. Environ. Sci. (China), 66, 208, 10.1016/j.jes.2017.05.026 Huang, 2017, The toxicity of nanoparticles depends on multiple molecular and physicochemical mechanisms, Int. J. Mol. Sci., 18, 2702, 10.3390/ijms18122702 Jiang, 2008, Does nanoparticle activity depend upon size and crystal phase?, Nanotoxicology, 2, 33, 10.1080/17435390701882478 Kaliamurthi, 2019, The relationship between Chlorella sp. and zinc oxide nanoparticles: changes in biochemical, oxygen evolution, and lipid production ability, Process Biochem., 85, 43, 10.1016/j.procbio.2019.06.005 Khoshnamvand, 2020, Impacts of organic matter on the toxicity of biosynthesized silver nanoparticles to green microalgae Chlorella vulgaris, Environ. Res., 185, 10.1016/j.envres.2020.109433 Kim, 2016, Magnesium aminoclay enhances lipid production of mixotrophic Chlorella sp. KR-1 while reducing bacterial populations, Bioresour. Technol., 219, 608, 10.1016/j.biortech.2016.08.034 Klin, 2018, Characteristics of the growth rate and lipid production in fourteen strains of Baltic green microalgae, Oceanol. Hydrobiol. Stud., 47, 10, 10.1515/ohs-2018-0002 Kobayashi, 2013, Characterization of three Chlorella sorokiniana strains in anaerobic digested effluent from cattle manure, Bioresour. Technol., 150, 377, 10.1016/j.biortech.2013.10.032 Liang, 2020, Toxicity of metals and metallic nanoparticles on nutritional properties of microalgae, Water, Air, Soil Pollut., 231, 52, 10.1007/s11270-020-4413-5 Lichtenthaler, 2001, Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy, Curr. Protoc. Food Anal. Chem., 1, 10.1002/0471142913.faf0403s01 Lone, 2013, Characterization of tolerance limit in Spirulina platensis in relation to nanoparticles, Water, Air, Soil Pollut., 224, 1670, 10.1007/s11270-013-1670-6 Mahana, 2021, Accumulation and cellular toxicity of engineered metallic nanoparticle in freshwater microalgae: current status and future challenges, Ecotoxicol. Environ. Saf., 208, 10.1016/j.ecoenv.2020.111662 Matouke, 2018, Binary effect of titanium dioxide nanoparticles (nTio2) and phosphorus on microalgae (Chlorella ’Ellipsoides Gerneck, 1907), Aquat. Toxicol., 198, 40, 10.1016/j.aquatox.2018.02.009 Melegari, 2013, Evaluation of toxicity and oxidative stress induced by copper oxide nanoparticles in the green alga Chlamydomonas reinhardtii, Aquat. Toxicol., 142–143, 431, 10.1016/j.aquatox.2013.09.015 Metzler, 2012, Responses of algal cells to engineered nanoparticles measured as algal cell population, chlorophyll a, and lipid peroxidation: effect of particle size and type, J. Nanotechnol., 1, 10.1155/2012/237284 Morelli, 2018, TiO2 nanoparticles in seawater: aggregation and interactions with the green alga Dunaliella tertiolecta, Ecotoxicol. Environ. Saf., 148, 184, 10.1016/j.ecoenv.2017.10.024 Nguyen, 2020, Microalgal ecotoxicity of nanoparticles: an updated review, Ecotoxicol. Environ. Saf., 201, 10.1016/j.ecoenv.2020.110781 Nogueira, 2015, The effects of graphene oxide on green algae Raphidocelis subcapitata, Aquat. Toxicol., 166, 29, 10.1016/j.aquatox.2015.07.001 Ouyang, 2012, Effects of five heavy metals at sub-lethal concentrations on the growth and photosynthesis of Chlorella vulgaris, Chin. Sci. Bull., 57, 3362, 10.1007/s11434-012-5366-x Pham, 2019, Effect of silver nanoparticles on tropical freshwater and marine microalgae, J. Chem., 1 Romero, 2020, Physiological and morphological responses of green microalgae Chlorella vulgaris to silver nanoparticles, Environ. Res., 189, 10.1016/j.envres.2020.109857 Roy, 2016, Differential effects of P25 TiO2 nanoparticles on freshwater green microalgae: chlorella and Scenedesmus species, Aquat. Toxicol., 176, 161, 10.1016/j.aquatox.2016.04.021 Salari, 2020, Facile template-free synthesis of new α-MnO2 nanorod/silver iodide p-n junction nanocomposites with high photocatalytic performance, New J. Chem., 44, 7401, 10.1039/D0NJ01033B Samei, 2019, The impact of morphology and size of zinc oxide nanoparticles on its toxicity to the freshwater microalga, Raphidocelis subcapitata, Environ. Sci. Pollut. Res. Int., 26, 2409, 10.1007/s11356-018-3787-z Saxena, 2020, Toxicity evaluation of iron oxide nanoparticles and accumulation by microalgae Coelastrella terrestris, Environ. Sci. Pollut. Res. Int., 27, 19650, 10.1007/s11356-020-08441-9 Sendra, 2018, Is the cell wall of marine phytoplankton a protective barrier or a nanoparticle interaction site? Toxicological responses of Chlorella autotrophica and Dunaliella salina to Ag and CeO2 nanoparticles, Ecol. Indicat., 95, 1053, 10.1016/j.ecolind.2017.08.050 Sendra, 2017, Toxicity of TiO2, in nanoparticle or bulk form to freshwater and marine microalgae under visible light and UV-A radiation, Environ. Pollut., 227, 39, 10.1016/j.envpol.2017.04.053 Sendra, 2017, Direct and indirect effects of silver nanoparticles on freshwater and marine microalgae (Chlamydomonas reinhardtii and Phaeodactylum tricornutum), Chemosphere, 179, 279, 10.1016/j.chemosphere.2017.03.123 Sibi, 2017, Metal nanoparticle triggered growth and lipid production in Chlorella vulgaris, Int. J. Sci. Res Env. Sci. Toxicol., 2, 1 Smythers, 2019, Chlorella vulgaris bioaccumulates excess manganese up to 55× under photomixotrophic conditions, Algal Res., 43, 10.1016/j.algal.2019.101641 Sobańska, 2021, Applications and biological activity of nanoparticles of manganese and manganese oxides in in Vitro and in Vivo models, Nanomaterials, 11, 1084, 10.3390/nano11051084 Sørensen, 2016, A multimethod approach for investigating algal toxicity of platinum nanoparticles, Environ. Sci. Technol., 50, 10635, 10.1021/acs.est.6b01072 Suman, 2015, Evaluation of zinc oxide nanoparticles toxicity on marine algae chlorella vulgaris through flow cytometric, cytotoxicity and oxidative stress analysis, Ecotoxicol. Environ. Saf., 113, 23, 10.1016/j.ecoenv.2014.11.015 Thaipong, 2006, Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts, J. Food Compos. Anal., 19, 669, 10.1016/j.jfca.2006.01.003 Thiagarajan, 2019, Diminishing bioavailability and toxicity of P25 TiO2 NPs during continuous exposure to marine algae Chlorella sp, Chemosphere, 233, 363, 10.1016/j.chemosphere.2019.05.270 Vargas-Estrada, 2020, Role of nanoparticles on microalgal cultivation: a review, Fuel, 280, 10.1016/j.fuel.2020.118598 Walters, 2016, Nanotoxicology: a review Wang, 2016, TiO2 nanoparticles in the marine environment: physical effects responsible for the toxicity on algae Phaeodactylum tricornutum, Sci. Total Environ., 565, 818, 10.1016/j.scitotenv.2016.03.164 Zaitseva, 2019, Toxicologic characteristics of nanodisperse manganese oxide: physical-chemical properties, biological accumulation, and morphological-functional properties at various exposure types Zamani, 2014, Evaluation of total reducing capacity in three Dunaliella salina (Dunal) Teodoresco isolates, J. Appl. Phycol., 26, 369, 10.1007/s10811-013-0074-8 Zamani, 2014, Influence of PbS nanoparticle polymer coating on their aggregation behavior and toxicity to the green algae Dunaliella salina, Aquat. Toxicol., 154, 176, 10.1016/j.aquatox.2014.05.012 Zinicovscaia, 2017, Selenium uptake and assessment of the biochemical changes in Arthrospira (Spirulina) platensis biomass during the synthesis of selenium nanoparticles, Can. J. Microbiol., 63, 27, 10.1139/cjm-2016-0339