Mechanism and regulation of human non-homologous DNA end-joining

Nature Reviews Molecular Cell Biology - Tập 4 Số 9 - Trang 712-720 - 2003
Michael R. Lieber1, Yunmei Ma2, Ulrich Pannicke3, Klaus Schwarz3
1Norris Comprehensive Cancer Center, Department of Pathology, University of Southern California School of Medicine, 1441 Eastlake Avenue, MS 9176, Los Angeles, California 90089, USA.
2Departments of Pathology, Norris Comprehensive Cancer Center, Biochemistry and Molecular Biology, Microbiology, and Biology, University of Southern California School of Medicine, Los Angeles, USA
3Department of Transfusion Medicine, University of Ulm, Institute for Clinical Transfusion Medicine and Immunogenetics, Ulm, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Haber, J. E. In vivo biochemistry: physical monitoring of recombination induced by site-specific endonucleases. BioEssays 17, 609–620 (1995).

Roth, D. & Wilson, J. in Genetic Recombination (eds Kucherlapapti, R. & Smith, G. R.) 621–653 (American Society for Microbiology, Washington DC, 1988).

Critchlow, S. E. & Jackson, S. P. DNA end-joining: from yeast to man. Trends Biochem. Sci. 23, 394–398 (1998).

Cheong, N., Wang, X., Wang, T. & Iliakis, G. Loss of S-phase-dependent radioresistance in irs-1 cells exposed to X-rays. Mut. Res. 314, 77–85 (1994).

Takata, M. et al. Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J. 17, 5497–5508 (1998). Determines the division of labour for the repair of DSBs at different times during the cell cycle.

Ma, Y., Pannicke, U., Schwarz, K. & Lieber, M. R. Hairpin opening and overhang processing by an Artemis:DNA-PKcs complex in V(D)J recombination and in nonhomologous end joining. Cell 108, 781–794 (2002). Describes the nuclease activity of Artemis and of the Artemis–DNA-PKcs complex.

National Radiation Protection Board. Living with Radiation (Reading, England, 1986).

Chance, B., Sies, H. & Boveris, A. Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 59, 527–603 (1979).

Raghavan, S. C., Kirsch, I. R. & Lieber, M. R. Analysis of the V(D)J recombination efficiency at lymphoid chromosomal translocation breakpoints. J. Biol. Chem. 276, 29126–29133 (2001).

Marculescu, R., Le, T., Simon, P., Jaeger, U. & Nadel, B. V(D)J-mediated translocations in lymphoid neoplasms: a functional assessment of genomic instability by cryptic sites. J. Exp. Med. 195, 85–98 (2002).

Lewis, S. M., Agard, E., Suh, S. & Czyzyk, L. Cryptic signals and the fidelity of V(D)J joining. Mol. Cell. Biol. 17, 3125–3136 (1997).

Kirsch, I. R. (ed.) The Causes and Consequences of Chromosomal Translocations 277–309 (CRC, Ann Arbor, 1993).

Roth, D. B. & Wilson, J. H. Nonhomologous recombination in mammalian cells: role for short sequence homologies in the joining reaction. Mol. Cell. Biol. 6, 4295–4304 (1986).

Gu, H., Förster, I. & Rajewsky, K. Sequence homologies, N sequence insertion and JH gene utililization in VHDHJH joining: implications for the joining mechanism and the ontogenetic timing of Ly1 B cell and B-CLL progenitor generation. EMBO J. 9, 2133–2140 (1990).

Gerstein, R. M. & Lieber, M. R. Coding end sequence can markedly affect the initiation of V(D)J recombination. Genes Dev. 7, 1459–1469 (1993).

Gerstein, R. M. & Lieber, M. R. Extent to which homology can constrain coding exon junctional diversity in V(D)J recombination. Nature 363, 625–627 (1993).

Tsukamoto, Y., Kato, J. & Ikeda, H. Silencing factors participate in DNA repair and recombination in S. cerevisiae. Nature 388, 900–903 (1997).

Wu, X., Wilson, T. E. & Lieber, M. R. A role for FEN-1 in nonhomologous DNA end joining. Proc. Natl Acad. Sci. USA 96, 1303–1308 (1999).

Wilson, T. & Lieber, M. R. Efficient processing of DNA ends during yeast nonhomologous end joining: evidence for a DNA polymerase β (Pol4)-dependent pathway. J. Biol. Chem. 274, 23599–23609 (1999). Describes the genetic evidence for a specific polymerase in NHEJ.

Lieber, M. R., Hesse, J. E., Mizuuchi, K. & Gellert, M. Lymphoid V(D)J recombination: nucleotide insertion at signal joints as well as coding joints. Proc. Natl Acad. Sci. USA 85, 8588–8592 (1988).

Agrawal, A. & Schatz, D. G. RAG1 and RAG2 form a stable postcleavage synaptic complex with DNA containing signal ends in V(D)J recombination. Cell 89, 43–53 (1997).

Hiom, K. & Gellert, M. Assembly of a 12/23 paired signal complex: a critical control point in V(D)J recombination. Mol. Cell 1, 1011–1019 (1998).

Lieber, M. R. et al. The defect in murine severe combined immune deficiency: joining of signal sequences but not coding segments in V(D)J recombination. Cell 55, 7–16 (1988).

Anderson, C. W. & Carter, T. H. in Molecular Analysis of DNA Rearrangements in the Immune System (eds Jessberger, R. & Lieber, M. R.) 91–112 (Springer, Heidelberg, 1996).

Falzon, M., Fewell, J. & Kuff, E. L. EBP-80, a transcription factor closely resembling the human autoantigen Ku, recognizes single- to double-strand transitions in DNA. J. Biol. Chem. 268, 10546–10552 (1993).

Mimori, T. & Hardin, J. A. Mechanism of interaction between Ku protein and DNA. J. Biol. Chem. 261, 10375–10379 (1986).

deVries, E., vanDriel, W., Bergsma, W. G., Arnberg, A. C. & vanderVliet, P. C. HeLa nuclear protein recognizing DNA termini and translocating on DNA forming a regular DNA-multimeric protein complex. J. Mol. Biol. 208, 65–78 (1989).

Yaneva, M., Kowalewski, T. & Lieber, M. R. Interaction of DNA-dependent protein kinase with DNA and with Ku: biochemical and atomic-force microscopy. EMBO J. 16, 5098–5112 (1997).

Walker, J. R., Corpina, R. A. & Goldberg, J. Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature 412, 607–614 (2001). Describes the crystal structure of the doughnut-shaped Ku molecule.

West, R. B., Yaneva, M. & Lieber, M. R. Productive and nonproductive complexes of Ku and DNA-PK at DNA termini. Mol. Cell. Biol. 18, 5908–5920 (1998).

Hammarsten, O. & Chu, G. DNA-dependent protein kinase: DNA binding and activation in the absence of Ku. Proc. Natl Acad. Sci. USA 95, 525–530 (1998).

Chiu, C. Y., Cary, R. B., Chen, D. J., Peterson, S. R. & Steward, P. L. Cryo-EM imaging of the catalytic subunit of the DNA-dependent protein kinase. J. Mol. Biol. 284, 1075–1081 (1998). The first physical image of DNA-PKcs.

Leuther, K. K., Hammarsten, O., Kornberg, R. D. & Chu, G. Structure of the DNA-dependent protein kinase: implications for its regulation by DNA. EMBO J. 18, 1114–1123 (1999). A low-resolution X-ray diffraction model of DNA-PKcs.

Hammarsten, O., DeFazio, L. G. & Chu, G. Activation of DNA-dependent protein kinase by single-stranded DNA ends. J. Biol. Chem. 275, 1541–1550 (2000). Defines the types of end that activate DNA-PKcs.

Pang, D., Yoo, S., Dynan, W. S., Jung, M. & Dritschilo, A. Ku proteins join DNA fragments as shown by atomic force microscopy. Cancer Res. 57, 1412–1415 (1997).

Cary, R. B. et al. DNA looping by Ku and the DNA-dependent protein kinase. Proc. Natl Acad. Sci. USA 94, 4267–4272 (1997).

Ramsden, D. A. & Gellert, M. Ku protein stimulates DNA end joining by mammalian DNA ligases: a direct role for Ku in repair of DNA double-strand breaks. EMBO J. 17, 609–614 (1998).

Tuteja, N. et al. Human DNA helicase II: a novel DNA unwinding enzyme identified as the Ku autoantigen. EMBO J. 13, 4991–5001 (1994).

Cooper, M. P. et al. Ku complex interacts with and stimulates the Werner protein. Genes Dev. 14, 907–912 (2000).

DeFazio, L. G., Stansel, R. M., Griffith, J. D. & Chu, G. Synapsis of DNA ends by DNA-dependent protein kinase. EMBO J. 21, 3192–3200 (2002).

Chappell, C., Hanakahi, L. A., Karimi-Busheri, F., Weinfeld, M. & West, S. C. Involvement of human polynucleotide kinase in double-strand break repair by non-homologous end joining. EMBO J. 21, 2827–2832 (2003).

Moshous, D. et al. Artemis, a novel DNA double-strand break repair/V(D)J recombination protein, is mutated in human severe combined immune deficiency. Cell 105, 177–186 (2001). Identification of Artemis as a defective component in human SCID.

Moshous, D. et al. A new gene involved in DNA double-strand break repair and V(D)J recombination is located on human chromosome 10p. Hum. Mol. Genet. 9, 583–588 (2000).

Nicolas, N. et al. A human severe combined immunodeficiency condition with increased sensitivity to ionizing radiation and impaired V(D)J rearrangements defines a new DNA recombination/repair deficiency. J. Exp. Med. 188, 627–634 (1998).

Rooney, S. et al. Leaky scid phenotype associated with defective V(D)J coding end processing in Artemis-deficient mice. Mol. Cell 10, 65–74 (2002). The Artemis -knockout mouse.

Paull, T. T. & Gellert, M. The 3′ to 5′ exonuclease activity of Mre11 facilitates repair of DNA double-strand breaks. Mol. Cell 1, 969–979 (1998).

Paull, T. T. & Gellert, M. Nbs1 potentiates ATP-driven DNA unwinding and endonuclease cleavage by the Mre11/Rad50 complex. Genes Dev. 13, 1276–1288 (1999).

Paull, T. T. & Gellert, M. A mechanistic basis for the Mre11-directed DNA joining at microhomologies. Proc. Natl Acad. Sci. USA 97, 6409–6414 (2000).

Bender, C. F. et al. Cancer predisposition and hematopoietic failure in Rad50(S/S) mice. Genes Dev. 16, 2237–2251 (2002).

Harfst, E., Cooper, S., Neubauer, S., Distel, L. & Grawunder, U. Normal V(D)J recombination in cells from patients with Nijmegen breakage syndrome. Mol. Immunol. 37, 915–929 (2000).

Yeo, T. C. et al. V(D)J rearrangement in Nijmegen breakage syndrome. Mol. Immunol. 37, 1131–1139 (2000).

Mahajan, K. N., Nick McElhinny, S. A., Mitchell, B. S. & Ramsden, D. A. Association of DNA polymerase μ (pol μ) with Ku and ligase IV: role for pol mu in end-joining double-strand break repair. Mol. Cell. Biol. 22, 5194–5202 (2002).

Burgers, P. M. et al. Eukaryotic DNA polymerases: proposal for a revised nomenclature. J. Biol. Chem. 276, 43487–43490 (2001).

Wilson, T. E., Grawunder, U. & Lieber, M. R. Yeast DNA ligase IV mediates non-homologous DNA end joining. Nature 388, 495–498 (1997).

Schar, P., Herrmann, G., Daly, G. & Lindahl, T. A newly identified DNA ligase of S. cerevisiae involved in RAD52-independent repair of DNA double-strand breaks. Genes Dev. 11, 1912–1924 (1997).

Teo, S. H. & Jackson, S. P. Identification of S. cerevisiae DNA ligase IV: involvement in DNA double-strand break repair. EMBO J. 16, 4788–4795 (1997).

Grawunder, U. et al. Activity of DNA ligase IV stimulated by complex formation with XRCC4 protein in mammalian cells. Nature 388, 492–495 (1997).

Critchlow, S., Bowater, R. & Jackson, S. P. Mammalian DNA double-strand break repair protein XRCC4 interacts with DNA ligase IV. Curr. Biol. 7, 588–598 (1997).

Taccioli, G. E. et al. Impairment of V(D)J recombination in double-strand break repair mutants. Science 260, 207–210 (1993).

Pergola, F., Zdzienicka, M. Z. & Lieber, M. V(D)J recombination in mammalian cell mutants defective in DNA double-strand break repair. Mol. Cell. Biol. 13, 3464–3471 (1993).

Giaccia, A. J., Richardson, E., Denko, N. & Stamato, T. D. Genetic analysis of the XR-1 mutation in hamster and human hybrids. Somat. Cell Mol. Genet. 15, 71–79 (1989).

Stamato, T. D., Weinstein, R., Giaccia, A. & Mackenzie, L. Isolation of cell-cycle dependent ã-ray sensitive Chinese hamster ovary cell. Somat. Cell Mol. Genet. 9, 165–173 (1983).

Grawunder, U., Zimmer, D., Fugmann, S., Schwarz, K. & Lieber, M. R. DNA ligase IV is essential for V(D)J recombination and DNA double-strand break repair in human precursor lymphocytes. Mol. Cell 2, 477–484 (1998).

Gao, Y. et al. A critical role for DNA end-joining proteins in both lymphogenesis and neurogenesis. Cell 95, 891–902 (1998).

Frank, K. M. et al. Late embryonic lethality and impaired V(D)J recombination in mice lacking DNA ligase IV. Nature 396, 173–177 (1998).

Herrmann, G., Lindahl, T. & Schar, P. S. cerevisiae LIF1: a function involved in DNA double-strand break repair related to mammalian XRCC4. EMBO J. 17, 4188–4198 (1998).

Grawunder, U., Zimmer, D., Kulesza, P. & Lieber, M. R. Requirement for an interaction of XRCC4 with DNA ligase IV for wild-type V(D)J recombination and DNA double-strand break repair in vivo. J. Biol. Chem. 273, 24708–24714 (1998).

Mizuta, R., Cheng, H. L., Gao, Y. & Alt, F. W. Molecular genetic characterization of XRCC4 function. Int. Immunol. 9, 1607–1613 (1997).

Modesti, M., Hesse, J. E. & Gellert, M. DNA binding of XRCC4 is associated with V(D)J recombination but not with stimulation of DNA ligase IV activity. EMBO J. 18, 2008–2018 (1999).

Robins, P. & Lindahl, T. DNA ligase IV from HeLa cell nuclei. J. Biol. Chem. 271, 24257–24261 (1996).

Junop, M. S. et al. Crystal structure of the XRCC4 DNA repair protein and implications for end joining. EMBO J. 19, 5962–5970 (2000).

Chen, L., Trujillo, K., Sung, P. & Tomkinson, A. E. Interactions of the DNA ligase IV-XRCC4 complex with DNA ends and the DNA-dependent protein kinase. J. Biol. Chem. 275, 26196–26205 (2000).

Nick McElhinny, S. A., Snowden, C. M., McCarville, J. & Ramsden, D. A. Ku recruits the XRCC4–ligase IV complex to DNA ends. Mol. Cell. Biol. 20, 2996–3003 (2000).

Karanjawala, Z. E. et al. The embryonic lethality in DNA ligase IV-deficient mice is rescued by deletion of Ku: implications for unifying the heterogeneous phenotypes of NHEJ mutants. DNA Repair 1, 1017–1026 (2002).

Gottlieb, T. & Jackson, S. P. The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen. Cell 72, 131–142 (1993).

Merkle, D. et al. The DNA-dependent protein kinase interacts with DNA to form a protein–DNA complex that is disrupted by phosphorylation. Biochemistry 41, 12706–12714 (2002).

Chan, D. W. et al. Autophosphorylation of the DNA-dependent protein kinase catalytic subunit is required for rejoining of DNA double-strand breaks. Genes Dev. 16, 2333–2338 (2002).

Bennett, C. B., Lewis, A. L., Baldwin, K. K. & Resnick, M. A. Lethality induced by a single site-specific double-strand break in a dispensible yeast plasmid. Proc. Natl Acad. Sci. USA 90, 5613–5617 (1993).

Pierce, A. J., Hu, P., Han, M., Ellis, N. & Jasin, M. Ku DNA end-binding protein modulates homologous repair of double-strand breaks in mammalian cells. Genes Dev. 15, 3237–3242 (2001).

Fukushima, T. et al. Genetic analysis of DNA-PK reveals an inhibitory role of Ku in late S–G2 phase of DNA double-strand break repair. J. Biol. Chem. 276, 44413–44418 (2001).

Adachi, N., Ishino, T., Ishii, Y., Takeda, S. & Koyama, H. DNA ligase IV-deficient cells are more resistant to ionizing radiation in the absence of Ku70: implications for DNA double-strand break repair. Proc. Natl Acad. Sci. USA 98, 12109–12113 (2001).

Delacote, F., Han, M., Stamato, T. D., Jasin, M. & Lopez, B. S. An XRCC4 defect or Wortmannin stimulates homologous recombination specifically induced by double-strand breaks in mammalian cells. Nucleic Acids Res. 30, 3454–3463 (2002).

Frank-Vaillant, M. & Marcand, S. Transient stability of DNA ends allows nonhomologous DNA end joining to precede homologous recombination. Mol. Cell 10, 1189–1199 (2002).

Prince, P. R., Emond, M. J. & Monnat, R. J. Loss of Werner syndrome protein function promotes aberrant mitotic recombination. Genes Dev. 15, 933–938 (2001).

Saintigny, Y., Makienko, K., Swanson, C., Emond, M. J. & Monnat, R. J. Homologous recombination resolution defect in Werner syndrome. Mol. Cell. Biol. 22, 6971–6978 (2002).

Lieber, M. R. in The Causes and Consequences of Chromosomal Translocations (ed. Kirsch, I.) 239–275 (CRC Press, Boca Raton, 1993).

Nussenzweig, A. et al. Requirement for Ku80 in growth and immunoglobulin V(D)J recombination. Nature 382, 551–555 (1996).

Gu, Y. et al. Growth retardation and leaky SCID phenotype of Ku70-deficient mice. Immunity 7, 653–665 (1997).

Vogel, H., Lim, D. -S., Karsenty, G., Finegold, M. & Hasty, P. Deletion of Ku86 causes early onset of senescence in mice. Proc. Natl Acad. Sci. USA 96, 10770–10775 (1999).

Li, B. & Comai, L. Functional interaction between Ku and the Werner syndrome protein in DNA end processing. J. Biol. Chem. 275, 28349–28352 (2000).

Yannone, S. M. et al. Werner syndrome protein is regulated and phosphorylated by DNA-dependent protein kinase. J. Biol. Chem. 276, 38242–38248 (2001).

Li, G. C. et al. Ku70: a candidate tumor suppressor gene for murine T cell lymphoma. Mol. Cell 2, 1–8 (1998).

Veuger, S. J., Curtin, N. J., Richardson, C. J., Smith, G. C. M. & Durkacz, B. W. Radiosensitization and DNA repair inhibition by the combined use of novel inhibitors of DNA-dependent protein kinase and poly(ADP-ribose) polymerase-1. Cancer Res. (in the press).

Rouse, J. & Jackson, S. P. Interfaces between the detection, signaling and repair of DNA damage. Science 297, 547–551 (2002).

Karanjawala, Z. E., Grawunder, U., Hsieh, C. -L. & Lieber, M. R. The nonhomologous DNA end joining pathway is important for chromosome stability in primary fibroblasts. Curr. Biol. 9, 1501–1504 (1999).

Karanjawala, Z., Murphy, N., Hinton, D. R., Hsieh, C. -L. & Lieber, M. R. Oxygen metabolism causes chromosome breaks and is associated with the neuronal apoptosis observed in double-strand break repair mutants. Curr. Biol. 12, 397–402 (2002).

Difilippantonio, M. J. et al. DNA repair protein Ku80 suppresses chromosomal aberrations and malignant transformation. Nature 404, 510–514 (2000).

Gao, Y. et al. Interplay of p53 and DNA repair protein XRCC4 in tumorigenesis, genomic instability and development. Nature 404, 897–900 (2000).

Martin, G. M., Smith, A. C., Ketterer, D. J., Ogburn, C. E. & Disteche, C. M. Increased chromosomal aberrations in first metaphases of cells isolated from the kidneys of aged mice. Israel J. Med. Sci. 21, 296–301 (1985).

Bertoncini, C. R. & Meneghini, R. DNA strand breaks produced by oxidative stress in mammalian cells exhibit 3′-phosphoglycolate termini. Nucl. Acids Res. 23, 2995–3002 (1995).