Mechanics of curved-ligament hexachiral metastructures under planar deformations
Tài liệu tham khảo
Airoldi, 2015, Chiral topologies for composite morphing structures – part I: development of a chiral rib for deformable airfoils, Phys. Status Solidi (B) Basic Res., 252, 1435, 10.1002/pssb.201451689
Airoldi, 2012, Design of a morphing airfoil with composite chiral structure, J. Aircr., 49, 1008, 10.2514/1.C031486
Ajdari, 2012, Hierarchical honeycombs with tailorable properties, Int. J. Solids Struct., 49, 1413, 10.1016/j.ijsolstr.2012.02.029
Alderson, 2010, Elastic constants of 3-, 4- and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading, Compos. Sci. Technol., 70, 1042, 10.1016/j.compscitech.2009.07.009
Alderson, 2010, The in-plane linear elastic constants and out-of-plane bending of 3-coordinated ligament and cylinder-ligament honeycombs, Compos. Sci. Technol., 70, 1034, 10.1016/j.compscitech.2009.07.010
Alomarah, 2018, An investigation of in-plane tensile properties of re-entrant chiral auxetic structure, Int. J. Adv. Manuf. Technol., 1
Babaee, 2016, Harnessing deformation to switch on and off the propagation of sound, Adv. Mater., 28, 1631, 10.1002/adma.201504469
Bacigalupo, 2016, Simplified modelling of chiral lattice materials with local resonators, Int. J. Solids Struct., 83, 126, 10.1016/j.ijsolstr.2016.01.005
Bacigalupo, 2016, Optimal design of auxetic hexachiral metamaterials with local resonators, Smart Mater. Struct., 25, 0, 10.1088/0964-1726/25/5/054009
Baravelli, 2013, High stiffness, high damping chiral metamaterial assemblies for low-frequency applications
Baravelli, 2013, Internally resonating lattices for bandgap generation and low-frequency vibration control, J. Sound Vib., 332, 6562, 10.1016/j.jsv.2013.08.014
Bessa, 2018, Design of ultra-thin shell structures in the stochastic post-buckling range using Bayesian machine learning and optimization, Int J Solids Struct, 139–140, 174, 10.1016/j.ijsolstr.2018.01.035
Bettini, 2010, Composite chiral structures for morphing airfoils: numerical analyses and development of a manufacturing process, Composites Part B, 41, 133, 10.1016/j.compositesb.2009.10.005
Bornengo, 2005, Evaluation of hexagonal chiral structure for morphing airfoil concept, Proc. Inst. Mech. Eng., Part G, 219, 185, 10.1243/095441005X30216
Chen, 2017, Lattice metamaterials with mechanically tunable Poisson’s ratio for vibration control, Phys. Rev. Appl., 024012, 1
Coulais, 2016, Combinatorial design of textured mechanical metamaterials, Nature, 535, 529, 10.1038/nature18960
Desmoulins, 2016, Auxeticity in truss networks and the role of bending versus stretching deformation, Smart Mater. Struct., 25, 054003, 10.1088/0964-1726/25/5/054003
Dirrenberger, 2013, Effective elastic properties of auxetic microstructures: anisotropy and structural applications, Int. J. Mech. Mater. Des., 9, 21, 10.1007/s10999-012-9192-8
Dong, 2017, Topology optimization of anisotropic broadband double-negative elastic metamaterials, J. Mech. Phys. Solids, 105, 54, 10.1016/j.jmps.2017.04.009
Ebrahimi, 2018, 3D Cellular metamaterials with planar anti-chiral topology, Mater. Des., 145, 226, 10.1016/j.matdes.2018.02.052
Evans, 2000, Auxetic materials: functional materials and structures from lateral thinking!, Adv. Mater., 12, 617, 10.1002/(SICI)1521-4095(200005)12:9<617::AID-ADMA617>3.0.CO;2-3
Frazier, 2017, Atomimetic mechanical structures with nonlinear topological domain evolution kinetics, Adv. Mater., 1605800, 10.1002/adma.201605800
Gibson, 1999
Grima, 2008, On the properties of auxetic meta-tetrachiral structures, Phys. Status Solidi (B) Basic Res., 245, 511, 10.1002/pssb.200777704
Ha, 2016, Chiral three-dimensional isotropic lattices with negative Poisson’s ratio, Phys. Status Solidi (B) Basic Res., 253, 1243, 10.1002/pssb.201600055
Harkati, 2017, The elastic uniaxial properties of a center symmetric honeycomb with curved cell walls: effect of density and curvature, Phys. Status Solidi (B) Basic Res., 254, 1
Hassan, 2008, Smart shape memory alloy chiral honeycomb, Mater. Sci. Eng., A, 481–482, 654, 10.1016/j.msea.2006.10.219
Hulsey, W., 1967. Cellular structure. US Patent 3,340,023.
Jacobs, 2012, Deployable auxetic shape memory alloy cellular antenna demonstrator: design, manufacturing and modal testing, Smart Mater. Struct., 21, 10.1088/0964-1726/21/7/075013
Kochmann, 2017, Exploiting microstructural instabilities in solids and structures: from metamaterials to structural transitions, Appl. Mech. Rev.
Lakes, 1987, Negative Poisson’s ratio materials, Science, 551, 10.1126/science.238.4826.551-a
Lakes, 1991, Deformation mechanisms in negative Poisson’s ratio materials: structural aspects, J. Mater. Sci., 26, 2287, 10.1007/BF01130170
Lakes, 2001, Extreme damping in compliant composites with a negative-stiffness phase, Philos. Mag. Lett., 81, 95, 10.1080/09500830010015332
Lepidi, 2017, Multi-parametric sensitivity analysis of the band structure for tetrachiral acoustic metamaterials, Int. J. Solids Struct., 136–137, 186
Mallikarachchi, 2014, Design of ultrathin composite self-deployable booms, J. Spacecr. Rockets, 51, 1811, 10.2514/1.A32815
Mallikarachchi, 2011, Quasi-static folding and deployment of ultrathin composite tape-spring hinges, J. Spacecr. Rockets, 48, 187, 10.2514/1.47321
Martin, 2008, The hexachiral prismatic wingbox concept, Phys. Status Solidi (B) Basic Res., 245, 570, 10.1002/pssb.200777709
Molinari, 2015, Design, realization and structural testing of a compliant adaptable wing, Smart Mater. Struct., 24, 105027, 10.1088/0964-1726/24/10/105027
Mousanezhad, 2015, Hierarchical honeycomb auxetic metamaterials, Sci. Rep., 5, 18306, 10.1038/srep18306
Mousanezhad, 2015, Spiderweb honeycombs, Int. J. Solids Struct., 66, 218, 10.1016/j.ijsolstr.2015.03.036
Mousanezhad, 2016, Elastic properties of chiral, anti-chiral, and hierarchical honeycombs: a simple energy-based approach, Theor. Appl. Mech. Lett., 6, 81, 10.1016/j.taml.2016.02.004
Pellegrino, 2015, 179
Prall, 1997, Properties of a chiral honeycomb with a Poisson’s ratio -1, Int. J. Mech. Sci, 39, 305, 10.1016/S0020-7403(96)00025-2
Runkel, 2017, Tailorable stiffness chiral metastructure, Phys. Status Solidi (RRL), 1700233, 1700233, 10.1002/pssr.201700233
Sanami, 2014, Auxetic materials for sports applications, Procedia Eng., 72, 453, 10.1016/j.proeng.2014.06.079
Seffen, 2000, Folding and deployment of curved tape springs, Int. J. Mech. Sci., 42, 2055, 10.1016/S0020-7403(99)00056-9
Soykasap, 2007, Analysis of tape spring hinges, Int. J. Mech. Sci., 49, 853, 10.1016/j.ijmecsci.2006.11.013
Spadoni, 2007, Numerical and experimental analysis of the static compliance of chiral truss-core airfoils, J. Mech. Mater. Struct., 2, 10.2140/jomms.2007.2.965
Spadoni, 2012, Elasto-static micropolar behavior of a chiral auxetic lattice, J. Mech. Phys. Solids, 60, 156, 10.1016/j.jmps.2011.09.012
Spadoni, 2009, Phononic properties of hexagonal chiral lattices, Wave Motion, 46, 435, 10.1016/j.wavemoti.2009.04.002
Tallarico, 2017, Tilted resonators in a triangular elastic lattice: Chirality, Bloch waves and negative refraction, J. Mech. Phys. Solids, 103, 236, 10.1016/j.jmps.2017.03.007
Tee, 2010, Wave propagation in auxetic tetrachiral honeycombs, J. Vib. Acoust., 132, 031007, 10.1115/1.4000785
Valdevit, 2011, Protocols for the optimal design of multi-functional cellular structures: from hypersonics to micro-architected materials, J. Am. Ceram. Soc., 94, 15, 10.1111/j.1551-2916.2011.04599.x
Wagner, 1928, Structures of Thin Sheet Metal.Their Design and Construction. NACA TM 490
Wu, 2018, Mechanical properties of anti-tetrachiral auxetic stents, Compos. Struct., 185, 381, 10.1016/j.compstruct.2017.11.048
Wuest, 1954, Einige Anwendungen der Theorie der Zylinderschale, ZAMM, 34, 444, 10.1002/zamm.19540341203
Zhang, 2018, The two-dimensional elasticity of a chiral hinge lattice metamaterial, Int. J. Solids Struct., 0, 1
Zheng, 2014, Ultralight, ultrastiff mechanical metamaterials, Science, 344, 1373, 10.1126/science.1252291