Mechanics of curved-ligament hexachiral metastructures under planar deformations

Journal of the Mechanics and Physics of Solids - Tập 125 - Trang 145-163 - 2019
F. Runkel1, G. Ramstein1, G. Molinari2, A.F. Arrieta3, P. Ermanni1
1Laboratory of Composite Materials and Adaptive Structures, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland
2RUAG Schweiz AG, RUAG Space, Schaffhauserstrasse 580, 8052 Zurich, Switzerland
3School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN, USA

Tài liệu tham khảo

Airoldi, 2015, Chiral topologies for composite morphing structures – part I: development of a chiral rib for deformable airfoils, Phys. Status Solidi (B) Basic Res., 252, 1435, 10.1002/pssb.201451689 Airoldi, 2012, Design of a morphing airfoil with composite chiral structure, J. Aircr., 49, 1008, 10.2514/1.C031486 Ajdari, 2012, Hierarchical honeycombs with tailorable properties, Int. J. Solids Struct., 49, 1413, 10.1016/j.ijsolstr.2012.02.029 Alderson, 2010, Elastic constants of 3-, 4- and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading, Compos. Sci. Technol., 70, 1042, 10.1016/j.compscitech.2009.07.009 Alderson, 2010, The in-plane linear elastic constants and out-of-plane bending of 3-coordinated ligament and cylinder-ligament honeycombs, Compos. Sci. Technol., 70, 1034, 10.1016/j.compscitech.2009.07.010 Alomarah, 2018, An investigation of in-plane tensile properties of re-entrant chiral auxetic structure, Int. J. Adv. Manuf. Technol., 1 Babaee, 2016, Harnessing deformation to switch on and off the propagation of sound, Adv. Mater., 28, 1631, 10.1002/adma.201504469 Bacigalupo, 2016, Simplified modelling of chiral lattice materials with local resonators, Int. J. Solids Struct., 83, 126, 10.1016/j.ijsolstr.2016.01.005 Bacigalupo, 2016, Optimal design of auxetic hexachiral metamaterials with local resonators, Smart Mater. Struct., 25, 0, 10.1088/0964-1726/25/5/054009 Baravelli, 2013, High stiffness, high damping chiral metamaterial assemblies for low-frequency applications Baravelli, 2013, Internally resonating lattices for bandgap generation and low-frequency vibration control, J. Sound Vib., 332, 6562, 10.1016/j.jsv.2013.08.014 Bessa, 2018, Design of ultra-thin shell structures in the stochastic post-buckling range using Bayesian machine learning and optimization, Int J Solids Struct, 139–140, 174, 10.1016/j.ijsolstr.2018.01.035 Bettini, 2010, Composite chiral structures for morphing airfoils: numerical analyses and development of a manufacturing process, Composites Part B, 41, 133, 10.1016/j.compositesb.2009.10.005 Bornengo, 2005, Evaluation of hexagonal chiral structure for morphing airfoil concept, Proc. Inst. Mech. Eng., Part G, 219, 185, 10.1243/095441005X30216 Chen, 2017, Lattice metamaterials with mechanically tunable Poisson’s ratio for vibration control, Phys. Rev. Appl., 024012, 1 Coulais, 2016, Combinatorial design of textured mechanical metamaterials, Nature, 535, 529, 10.1038/nature18960 Desmoulins, 2016, Auxeticity in truss networks and the role of bending versus stretching deformation, Smart Mater. Struct., 25, 054003, 10.1088/0964-1726/25/5/054003 Dirrenberger, 2013, Effective elastic properties of auxetic microstructures: anisotropy and structural applications, Int. J. Mech. Mater. Des., 9, 21, 10.1007/s10999-012-9192-8 Dong, 2017, Topology optimization of anisotropic broadband double-negative elastic metamaterials, J. Mech. Phys. Solids, 105, 54, 10.1016/j.jmps.2017.04.009 Ebrahimi, 2018, 3D Cellular metamaterials with planar anti-chiral topology, Mater. Des., 145, 226, 10.1016/j.matdes.2018.02.052 Evans, 2000, Auxetic materials: functional materials and structures from lateral thinking!, Adv. Mater., 12, 617, 10.1002/(SICI)1521-4095(200005)12:9<617::AID-ADMA617>3.0.CO;2-3 Frazier, 2017, Atomimetic mechanical structures with nonlinear topological domain evolution kinetics, Adv. Mater., 1605800, 10.1002/adma.201605800 Gibson, 1999 Grima, 2008, On the properties of auxetic meta-tetrachiral structures, Phys. Status Solidi (B) Basic Res., 245, 511, 10.1002/pssb.200777704 Ha, 2016, Chiral three-dimensional isotropic lattices with negative Poisson’s ratio, Phys. Status Solidi (B) Basic Res., 253, 1243, 10.1002/pssb.201600055 Harkati, 2017, The elastic uniaxial properties of a center symmetric honeycomb with curved cell walls: effect of density and curvature, Phys. Status Solidi (B) Basic Res., 254, 1 Hassan, 2008, Smart shape memory alloy chiral honeycomb, Mater. Sci. Eng., A, 481–482, 654, 10.1016/j.msea.2006.10.219 Hulsey, W., 1967. Cellular structure. US Patent 3,340,023. Jacobs, 2012, Deployable auxetic shape memory alloy cellular antenna demonstrator: design, manufacturing and modal testing, Smart Mater. Struct., 21, 10.1088/0964-1726/21/7/075013 Kochmann, 2017, Exploiting microstructural instabilities in solids and structures: from metamaterials to structural transitions, Appl. Mech. Rev. Lakes, 1987, Negative Poisson’s ratio materials, Science, 551, 10.1126/science.238.4826.551-a Lakes, 1991, Deformation mechanisms in negative Poisson’s ratio materials: structural aspects, J. Mater. Sci., 26, 2287, 10.1007/BF01130170 Lakes, 2001, Extreme damping in compliant composites with a negative-stiffness phase, Philos. Mag. Lett., 81, 95, 10.1080/09500830010015332 Lepidi, 2017, Multi-parametric sensitivity analysis of the band structure for tetrachiral acoustic metamaterials, Int. J. Solids Struct., 136–137, 186 Mallikarachchi, 2014, Design of ultrathin composite self-deployable booms, J. Spacecr. Rockets, 51, 1811, 10.2514/1.A32815 Mallikarachchi, 2011, Quasi-static folding and deployment of ultrathin composite tape-spring hinges, J. Spacecr. Rockets, 48, 187, 10.2514/1.47321 Martin, 2008, The hexachiral prismatic wingbox concept, Phys. Status Solidi (B) Basic Res., 245, 570, 10.1002/pssb.200777709 Molinari, 2015, Design, realization and structural testing of a compliant adaptable wing, Smart Mater. Struct., 24, 105027, 10.1088/0964-1726/24/10/105027 Mousanezhad, 2015, Hierarchical honeycomb auxetic metamaterials, Sci. Rep., 5, 18306, 10.1038/srep18306 Mousanezhad, 2015, Spiderweb honeycombs, Int. J. Solids Struct., 66, 218, 10.1016/j.ijsolstr.2015.03.036 Mousanezhad, 2016, Elastic properties of chiral, anti-chiral, and hierarchical honeycombs: a simple energy-based approach, Theor. Appl. Mech. Lett., 6, 81, 10.1016/j.taml.2016.02.004 Pellegrino, 2015, 179 Prall, 1997, Properties of a chiral honeycomb with a Poisson’s ratio -1, Int. J. Mech. Sci, 39, 305, 10.1016/S0020-7403(96)00025-2 Runkel, 2017, Tailorable stiffness chiral metastructure, Phys. Status Solidi (RRL), 1700233, 1700233, 10.1002/pssr.201700233 Sanami, 2014, Auxetic materials for sports applications, Procedia Eng., 72, 453, 10.1016/j.proeng.2014.06.079 Seffen, 2000, Folding and deployment of curved tape springs, Int. J. Mech. Sci., 42, 2055, 10.1016/S0020-7403(99)00056-9 Soykasap, 2007, Analysis of tape spring hinges, Int. J. Mech. Sci., 49, 853, 10.1016/j.ijmecsci.2006.11.013 Spadoni, 2007, Numerical and experimental analysis of the static compliance of chiral truss-core airfoils, J. Mech. Mater. Struct., 2, 10.2140/jomms.2007.2.965 Spadoni, 2012, Elasto-static micropolar behavior of a chiral auxetic lattice, J. Mech. Phys. Solids, 60, 156, 10.1016/j.jmps.2011.09.012 Spadoni, 2009, Phononic properties of hexagonal chiral lattices, Wave Motion, 46, 435, 10.1016/j.wavemoti.2009.04.002 Tallarico, 2017, Tilted resonators in a triangular elastic lattice: Chirality, Bloch waves and negative refraction, J. Mech. Phys. Solids, 103, 236, 10.1016/j.jmps.2017.03.007 Tee, 2010, Wave propagation in auxetic tetrachiral honeycombs, J. Vib. Acoust., 132, 031007, 10.1115/1.4000785 Valdevit, 2011, Protocols for the optimal design of multi-functional cellular structures: from hypersonics to micro-architected materials, J. Am. Ceram. Soc., 94, 15, 10.1111/j.1551-2916.2011.04599.x Wagner, 1928, Structures of Thin Sheet Metal.Their Design and Construction. NACA TM 490 Wu, 2018, Mechanical properties of anti-tetrachiral auxetic stents, Compos. Struct., 185, 381, 10.1016/j.compstruct.2017.11.048 Wuest, 1954, Einige Anwendungen der Theorie der Zylinderschale, ZAMM, 34, 444, 10.1002/zamm.19540341203 Zhang, 2018, The two-dimensional elasticity of a chiral hinge lattice metamaterial, Int. J. Solids Struct., 0, 1 Zheng, 2014, Ultralight, ultrastiff mechanical metamaterials, Science, 344, 1373, 10.1126/science.1252291