Mechanically robust and self-healable perovskite solar cells

Cell Reports Physical Science - Tập 2 Số 2 - Trang 100320 - 2021
Blake P. Finkenauer1, Yao Gao1, Xiaokang Wang2, Yue Tian3, Zitang Wei1, Chenhui Zhu4, David J. Rokke1, Linrui Jin5, Lei Meng6,7, Yang Yang7, Libai Huang5, Kejie Zhao2, Letian Dou8,1
1Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
2School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
3State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China
4Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
5Department of Chemistry, Purdue University, West Lafayette, IN, 47907 USA
6Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
7Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA
8Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Munaoka, 2018, Ionically Conductive Self-Healing Binder for Low Cost Si Microparticles Anodes in Li-Ion Batteries, Adv. Energy Mater., 8, 1703138, 10.1002/aenm.201703138

Yanagisawa, 2018, Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking, Science, 359, 72, 10.1126/science.aam7588

Ghosh, 2012, UV-initiated self-healing of oxolane–chitosan–polyurethane (OXO–CHI–PUR) networks, J. Mater. Chem., 22, 16104, 10.1039/c2jm31126g

Delpierre, 2017, Dynamic Iminoboronate-Based Boroxine Chemistry for the Design of Ambient Humidity-Sensitive Self-Healing Polymers, Chemistry, 23, 6730, 10.1002/chem.201700333

Kim, 2018, Superior Toughness and Fast Self-Healing at Room Temperature Engineered by Transparent Elastomers, Adv. Mater., 30, 1705145, 10.1002/adma.201705145

Li, 2016, A highly stretchable autonomous self-healing elastomer, Nat. Chem., 8, 618, 10.1038/nchem.2492

Tan, 2020, A transparent, self-healing and high-κ dielectric for low-field-emission stretchable optoelectronics, Nat. Mater., 19, 182, 10.1038/s41563-019-0548-4

Cao, 2017, A Transparent, Self-Healing, Highly Stretchable Ionic Conductor, Adv. Mater., 29, 1605099, 10.1002/adma.201605099

Oh, 2019, Stretchable self-healable semiconducting polymer film for active-matrix strain-sensing array, Sci. Adv., 5, eaav3097, 10.1126/sciadv.aav3097

Gao, 2019, Highly Stable Lead-Free Perovskite Field-Effect Transistors Incorporating Linear π-Conjugated Organic Ligands, J. Am. Chem. Soc., 141, 15577, 10.1021/jacs.9b06276

Sim, 2019, Fully rubbery integrated electronics from high effective mobility intrinsically stretchable semiconductors, Sci. Adv., 5, eaav5749, 10.1126/sciadv.aav5749

Wang, 2017, Low-voltage, High-performance Organic Field-Effect Transistors Based on 2D Crystalline Molecular Semiconductors, Sci. Rep., 7, 7830, 10.1038/s41598-017-08280-8

He, 2017, Ultrahigh mobility and efficient charge injection in monolayer organic thin-film transistors on boron nitride, Sci. Adv., 3, e1701186, 10.1126/sciadv.1701186

Stranks, 2013, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber, Science, 342, 341, 10.1126/science.1243982

Dong, 2015, Solar cells. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals, Science, 347, 967, 10.1126/science.aaa5760

Zhang, 2017, Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes, Nat. Commun., 8, 15640, 10.1038/ncomms15640

Chen, 2020, Structural and spectral dynamics of single-crystalline Ruddlesden-Popper phase halide perovskite blue light-emitting diodes, Sci. Adv., 6, eaay4045, 10.1126/sciadv.aay4045

Tong, 2019, Carrier lifetimes of >1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells, Science, 364, 475, 10.1126/science.aav7911

Shi, 2018, Two-dimensional halide perovskite nanomaterials and heterostructures, Chem. Soc. Rev., 47, 6046, 10.1039/C7CS00886D

2020

Wang, 2019, Symmetry Breaking at MAPbI3 Perovskite Grain Boundaries Suppresses Charge Recombination: Time-Domain Ab Initio Analysis, J. Phys. Chem. Lett., 10, 1617, 10.1021/acs.jpclett.9b00763

Zhu, 2016, Screening in crystalline liquids protects energetic carriers in hybrid perovskites, Science, 353, 1409, 10.1126/science.aaf9570

Miyata, 2017, Lead halide perovskites: crystal-liquid duality, phonon glass electron crystals, and large polaron formation, Sci. Adv., 3, e1701469, 10.1126/sciadv.1701469

Varadwaj, 2019, Significance of hydrogen bonding and other noncovalent interactions in determining octahedral tilting in the CH3NH3PbI3 hybrid organic-inorganic halide perovskite solar cell semiconductor, Sci. Rep., 9, 50, 10.1038/s41598-018-36218-1

Svane, 2017, How Strong Is the Hydrogen Bond in Hybrid Perovskites?, J. Phys. Chem. Lett., 8, 6154, 10.1021/acs.jpclett.7b03106

Zhao, 2016, A polymer scaffold for self-healing perovskite solar cells, Nat. Commun., 7, 10228, 10.1038/ncomms10228

Zuo, 2017, Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells, Sci. Adv., 3, e1700106, 10.1126/sciadv.1700106

Bi, 2016, Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%, Nat. Energy, 1, 16142, 10.1038/nenergy.2016.142

Jiang, 2018, Polymer Doping for High-Efficiency Perovskite Solar Cells with Improved Moisture Stability, Adv. Energy Mater., 8, 1701757, 10.1002/aenm.201701757

Han, 2019, Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells, Nat. Commun., 10, 520, 10.1038/s41467-019-08455-z

Lee, 2017, A Bifunctional Lewis Base Additive for Microscopic Homogeneity in Perovskite Solar Cells, CHEMPR, 3, 290

Liu, 2020, Regulated Crystallization of Efficient and Stable Tin-Based Perovskite Solar Cells via a Self-Sealing Polymer, ACS Appl. Mater. Interfaces, 12, 14049, 10.1021/acsami.0c01311

Xu, 2019, Rational molecular passivation for high-performance perovskite light-emitting diodes, Nat. Photonics, 13, 418, 10.1038/s41566-019-0390-x

Zhu, 2017, Investigation on the role of Lewis bases in the ripening process of perovskite films for highly efficient perovskite solar cells, J. Mater. Chem. A Mater. Energy Sustain., 5, 20874, 10.1039/C7TA05378A

Hsieh, 2018, Low-temperature, simple and efficient preparation of perovskite solar cells using Lewis bases urea and thiourea as additives: stimulating large grain growth and providing a PCE up to 18.8%, RSC Advances, 8, 19610, 10.1039/C8RA03175D

Jeon, 2014, Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells, Nat. Mater., 13, 897, 10.1038/nmat4014

Yang, 2017, Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells, Science, 356, 1376, 10.1126/science.aan2301

Thampy, 2020, Altered Stability and Degradation Pathway of CH 3 NH 3 PbI 3 in Contact with Metal Oxide, ACS Energy Lett., 5, 1147, 10.1021/acsenergylett.0c00041

Li, 2018, In-situ cross-linking strategy for efficient and operationally stable methylammoniun lead iodide solar cells, Nat. Commun., 9, 3806, 10.1038/s41467-018-06204-2

Zhang, 2017, Passivated perovskite crystallization and stability in organic-inorganic halide solar cells by doping a donor polymer, J. Mater. Chem. A Mater. Energy Sustain., 5, 2572, 10.1039/C6TA08970D