Mechanically robust and self-healable perovskite solar cells
Tóm tắt
Từ khóa
Tài liệu tham khảo
Munaoka, 2018, Ionically Conductive Self-Healing Binder for Low Cost Si Microparticles Anodes in Li-Ion Batteries, Adv. Energy Mater., 8, 1703138, 10.1002/aenm.201703138
Yanagisawa, 2018, Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking, Science, 359, 72, 10.1126/science.aam7588
Ghosh, 2012, UV-initiated self-healing of oxolane–chitosan–polyurethane (OXO–CHI–PUR) networks, J. Mater. Chem., 22, 16104, 10.1039/c2jm31126g
Delpierre, 2017, Dynamic Iminoboronate-Based Boroxine Chemistry for the Design of Ambient Humidity-Sensitive Self-Healing Polymers, Chemistry, 23, 6730, 10.1002/chem.201700333
Kim, 2018, Superior Toughness and Fast Self-Healing at Room Temperature Engineered by Transparent Elastomers, Adv. Mater., 30, 1705145, 10.1002/adma.201705145
Li, 2016, A highly stretchable autonomous self-healing elastomer, Nat. Chem., 8, 618, 10.1038/nchem.2492
Tan, 2020, A transparent, self-healing and high-κ dielectric for low-field-emission stretchable optoelectronics, Nat. Mater., 19, 182, 10.1038/s41563-019-0548-4
Cao, 2017, A Transparent, Self-Healing, Highly Stretchable Ionic Conductor, Adv. Mater., 29, 1605099, 10.1002/adma.201605099
Oh, 2019, Stretchable self-healable semiconducting polymer film for active-matrix strain-sensing array, Sci. Adv., 5, eaav3097, 10.1126/sciadv.aav3097
Gao, 2019, Highly Stable Lead-Free Perovskite Field-Effect Transistors Incorporating Linear π-Conjugated Organic Ligands, J. Am. Chem. Soc., 141, 15577, 10.1021/jacs.9b06276
Sim, 2019, Fully rubbery integrated electronics from high effective mobility intrinsically stretchable semiconductors, Sci. Adv., 5, eaav5749, 10.1126/sciadv.aav5749
Wang, 2017, Low-voltage, High-performance Organic Field-Effect Transistors Based on 2D Crystalline Molecular Semiconductors, Sci. Rep., 7, 7830, 10.1038/s41598-017-08280-8
He, 2017, Ultrahigh mobility and efficient charge injection in monolayer organic thin-film transistors on boron nitride, Sci. Adv., 3, e1701186, 10.1126/sciadv.1701186
Stranks, 2013, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber, Science, 342, 341, 10.1126/science.1243982
Dong, 2015, Solar cells. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals, Science, 347, 967, 10.1126/science.aaa5760
Zhang, 2017, Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes, Nat. Commun., 8, 15640, 10.1038/ncomms15640
Chen, 2020, Structural and spectral dynamics of single-crystalline Ruddlesden-Popper phase halide perovskite blue light-emitting diodes, Sci. Adv., 6, eaay4045, 10.1126/sciadv.aay4045
Tong, 2019, Carrier lifetimes of >1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells, Science, 364, 475, 10.1126/science.aav7911
Shi, 2018, Two-dimensional halide perovskite nanomaterials and heterostructures, Chem. Soc. Rev., 47, 6046, 10.1039/C7CS00886D
2020
Wang, 2019, Symmetry Breaking at MAPbI3 Perovskite Grain Boundaries Suppresses Charge Recombination: Time-Domain Ab Initio Analysis, J. Phys. Chem. Lett., 10, 1617, 10.1021/acs.jpclett.9b00763
Zhu, 2016, Screening in crystalline liquids protects energetic carriers in hybrid perovskites, Science, 353, 1409, 10.1126/science.aaf9570
Miyata, 2017, Lead halide perovskites: crystal-liquid duality, phonon glass electron crystals, and large polaron formation, Sci. Adv., 3, e1701469, 10.1126/sciadv.1701469
Varadwaj, 2019, Significance of hydrogen bonding and other noncovalent interactions in determining octahedral tilting in the CH3NH3PbI3 hybrid organic-inorganic halide perovskite solar cell semiconductor, Sci. Rep., 9, 50, 10.1038/s41598-018-36218-1
Svane, 2017, How Strong Is the Hydrogen Bond in Hybrid Perovskites?, J. Phys. Chem. Lett., 8, 6154, 10.1021/acs.jpclett.7b03106
Zhao, 2016, A polymer scaffold for self-healing perovskite solar cells, Nat. Commun., 7, 10228, 10.1038/ncomms10228
Zuo, 2017, Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells, Sci. Adv., 3, e1700106, 10.1126/sciadv.1700106
Bi, 2016, Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%, Nat. Energy, 1, 16142, 10.1038/nenergy.2016.142
Jiang, 2018, Polymer Doping for High-Efficiency Perovskite Solar Cells with Improved Moisture Stability, Adv. Energy Mater., 8, 1701757, 10.1002/aenm.201701757
Han, 2019, Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells, Nat. Commun., 10, 520, 10.1038/s41467-019-08455-z
Lee, 2017, A Bifunctional Lewis Base Additive for Microscopic Homogeneity in Perovskite Solar Cells, CHEMPR, 3, 290
Liu, 2020, Regulated Crystallization of Efficient and Stable Tin-Based Perovskite Solar Cells via a Self-Sealing Polymer, ACS Appl. Mater. Interfaces, 12, 14049, 10.1021/acsami.0c01311
Xu, 2019, Rational molecular passivation for high-performance perovskite light-emitting diodes, Nat. Photonics, 13, 418, 10.1038/s41566-019-0390-x
Zhu, 2017, Investigation on the role of Lewis bases in the ripening process of perovskite films for highly efficient perovskite solar cells, J. Mater. Chem. A Mater. Energy Sustain., 5, 20874, 10.1039/C7TA05378A
Hsieh, 2018, Low-temperature, simple and efficient preparation of perovskite solar cells using Lewis bases urea and thiourea as additives: stimulating large grain growth and providing a PCE up to 18.8%, RSC Advances, 8, 19610, 10.1039/C8RA03175D
Jeon, 2014, Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells, Nat. Mater., 13, 897, 10.1038/nmat4014
Yang, 2017, Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells, Science, 356, 1376, 10.1126/science.aan2301
Thampy, 2020, Altered Stability and Degradation Pathway of CH 3 NH 3 PbI 3 in Contact with Metal Oxide, ACS Energy Lett., 5, 1147, 10.1021/acsenergylett.0c00041
Li, 2018, In-situ cross-linking strategy for efficient and operationally stable methylammoniun lead iodide solar cells, Nat. Commun., 9, 3806, 10.1038/s41467-018-06204-2