Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete
Tóm tắt
Từ khóa
Tài liệu tham khảo
Othuman, 2011, Elevated-temperature thermal properties of lightweight foamed concrete, Constr Build Mater, 25, 705, 10.1016/j.conbuildmat.2010.07.016
Akthar, 2010, High porosity (>90%) cementitious foams, Cem Concr Res, 40, 352, 10.1016/j.cemconres.2009.10.012
Kreft O, Hausmann J, Hubálková J, Aneziris CG, Straube B, Schoch T. Pore size distribution effects on the thermal conductivity of light weight autolaved aerated concrete. In: 5th international conference on autoclaved aerated concrete, Bydgoscsz (Poland); 2011. p. 257–64.
Zhang, 2014, Geopolymer foam concrete: an emerging material for sustainable construction, Constr Build Mater, 5, 113, 10.1016/j.conbuildmat.2014.01.081
Provis, 2014, Geopolymers and related alkali-activated materials, Annu Rev Mater Res, 44, 299, 10.1146/annurev-matsci-070813-113515
Duxson, 2007, The role of inorganic polymer technology in the development of ‘green concrete’, Cem Concr Res, 37, 1590, 10.1016/j.cemconres.2007.08.018
Arellano Aguilar, 2010, Lightweight concretes of activated metakaolin–fly ash binders, with blast furnace slag aggregates, Constr Build Mater, 24, 1166, 10.1016/j.conbuildmat.2009.12.024
Aldridge, 2005, Introduction to foamed concrete: what, why, how, 1
Kamseu, 2012, Bulk composition and microstructure dependence of effective thermal conductivity of porous inorganic polymer cements, J Eur Ceram Soc, 32, 1593, 10.1016/j.jeurceramsoc.2011.12.030
Kamseu, 2011, Insulating behavior of metakaolin-based geopolymer materials assess with heat flux meter and laser flash techniques, J Therm Anal Calorim, 108, 1189, 10.1007/s10973-011-1798-9
Duxson, 2006, Thermal conductivity of metakaolin geopolymers used as a first approximation for determining gel interconnectivity, Ind Eng Chem Res, 45, 7781, 10.1021/ie060187o
Prud’homme, 2010, Silica fume as porogent agent in geo-materials at low temperature, J Eur Ceram Soc, 30, 1641, 10.1016/j.jeurceramsoc.2010.01.014
Henon, 2012, Porosity control of cold consolidated geomaterial foam: temperature effect, Ceram Int, 38, 77, 10.1016/j.ceramint.2011.06.040
Gouny, 2012, A geopolymer mortar for wood and earth structures, Constr Build Mater, 36, 188, 10.1016/j.conbuildmat.2012.04.009
Zhang, 2010, Effects of fly ash source and curing procedure on strength development of geopolymers
Al Bakri Abdullah, 2012, Fly ash-based geopolymer lightweight concrete using foaming agent, Int J Mol Sci, 13, 7186, 10.3390/ijms13067186
Brady, 2001, Specification for foamed concrete, Highways Agen TRL Appl Guide AG, 39
Choy, 2009, Sound propagation in and low frequency noise absorption by helium-filled porous material, J Acoust Soc Am, 126, 3008, 10.1121/1.3257182
Narayanan, 2000, Structure and properties of aerated concrete: a review, Cem Concr Compos, 22, 321, 10.1016/S0958-9465(00)00016-0
Puertas, 2000, Alkali-activated fly ash/slag cement strength behaviour and hydration products, Cem Concr Res, 30, 1625, 10.1016/S0008-8846(00)00298-2
Kumar, 2010, Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer, J Mater Sci, 45, 607, 10.1007/s10853-009-3934-5
Yang, 2012, Mechanical property and structure of alkali-activated fly ash and slag blends, J Sust Cem-Based Mater, 1, 167
Ismail, 2013, Influence of fly ash on the water and chloride permeability of alkali-activated slag mortars and concretes, Constr Build Mater, 48, 1187, 10.1016/j.conbuildmat.2013.07.106
Lee, 2002, Effects of anions on the formation of aluminosilicate gel in geopolymers, Ind Eng Chem Res, 41, 4550, 10.1021/ie0109410
Winnefeld, 2010, Assessment of phase formation in alkali activated low and high calcium fly ashes in building materials, Constr Build Mater, 24, 1086, 10.1016/j.conbuildmat.2009.11.007
Kunhanandan Nambiar, 2006, Influence of filler type on the properties of foam concrete, Cem Concr Compos, 28, 475, 10.1016/j.cemconcomp.2005.12.001
Pan, 2007, Preparation of high performance foamed concrete from cement, sand and mineral admixtures, J Wuhan Uni Tech – Mater Sci Ed, 22, 295, 10.1007/s11595-005-2295-4
De Schutter, 1995, Specific heat and thermal diffusivity of hardening concrete, Mag Concr Res, 47, 203, 10.1680/macr.1995.47.172.203
Fernández-Jiménez, 2008, New cementitious materials based on alkali-activated fly ash: performance at high temperatures, J Am Ceram Soc, 91, 3308, 10.1111/j.1551-2916.2008.02625.x
Rickard, 2011, Assessing the suitability of three Australian fly ashes as an aluminosilicate source for geopolymers in high temperature applications, Mater Sci Eng A, 528, 3390, 10.1016/j.msea.2011.01.005
Bernal, 2011, Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends, J Mater Sci, 46, 5477, 10.1007/s10853-011-5490-z
Vickers, 2014, Strategies to control the high temperature shrinkage of fly ash based geopolymers, Thermochim Acta, 580, 20, 10.1016/j.tca.2014.01.020
Hlaváček, 2015, Inorganic foams made from alkali-activated fly ash: mechanical, chemical and physical properties, J Eur Ceram Soc, 35, 703, 10.1016/j.jeurceramsoc.2014.08.024
Provis, 2012, Dilatometry of geopolymers as a means of selecting desirable fly ash sources, J Non-Cryst Solids, 358, 1930, 10.1016/j.jnoncrysol.2012.06.001
Provis, 2009, Correlating mechanical and thermal properties of sodium silicate-fly ash geopolymers, Colloids Surf A, 336, 57, 10.1016/j.colsurfa.2008.11.019
Zhang, 2009, Role of water in the synthesis of calcined kaolin-based geopolymer, Appl Clay Sci, 43, 218, 10.1016/j.clay.2008.09.003
Dombrowski, 2007, The influence of calcium content on the structure and thermal performance of fly ash based geopolymers, J Mater Sci, 42, 3033, 10.1007/s10853-006-0532-7
Rickard, 2010, Thermal character of geopolymers synthesized from class F fly ash containing high concentrations of iron and α-quartz, Int J Appl Ceram Tech, 7, 81, 10.1111/j.1744-7402.2008.02328.x
Natali Murri, 2013, High temperature behaviour of ambient cured alkali-activated materials based on ladle slag, Cem Concr Res, 43, 51, 10.1016/j.cemconres.2012.09.011
Lemougna, 2011, Synthesis and thermal properties of inorganic polymers (geopolymers) for structural and refractory applications from volcanic ash, Ceram Int, 37, 3011, 10.1016/j.ceramint.2011.05.002
He, 2011, Thermal evolution and crystallization kinetics of potassium-based geopolymer, Ceram Int, 37, 59, 10.1016/j.ceramint.2010.08.008
Duxson, 2005, Understanding the relationship between geopolymer composition, microstructure and mechanical properties, Colloids Surf A, 269, 47, 10.1016/j.colsurfa.2005.06.060
Duxson, 2006, Thermal evolution of metakaolin geopolymers: part 1-physical evolution, J Non-Cryst Solids, 352, 5541, 10.1016/j.jnoncrysol.2006.09.019
Kondratiev, 2001, Predicting coal ash slag flow characteristics (viscosity model for the Al2O3–CaO–‘FeO’–SiO2 system), Fuel, 80, 1989, 10.1016/S0016-2361(01)00083-7
Rashad, 2011, The effect of activator concentration on the residual strength of alkali-activated fly ash pastes subjected to thermal load, Constr Build Mater, 25, 3098, 10.1016/j.conbuildmat.2010.12.044
Kuenzel, 2013, Production of nepheline/quartz ceramics from geopolymer mortars, J Eur Ceram Soc, 33, 251, 10.1016/j.jeurceramsoc.2012.08.022
Provis, 2012, X-ray microtomography shows pore structure and tortuosity in alkali-activated binders, Cem Concr Res, 42, 855, 10.1016/j.cemconres.2012.03.004
Tiwari, 2004, Acoustic properties of cenosphere reinforced cement and asphalt concrete, Appl Acoust, 65, 263, 10.1016/j.apacoust.2003.09.002
Luo, 2011, Effects of porosity and pore size on sound absorption characteristic of ceramsite porous material, J Chin Ceram Soc, 39, 158