Mechanical property characterization and simulation of fused deposition modeling Polycarbonate parts
Tóm tắt
Từ khóa
Tài liệu tham khảo
R. Hague, Unlocking the design potential of rapid manufacturing, in: Rapid Manufacturing: An Industrial Revolution for the Digital Age, 2005.
Onuh, 1998, Optimising build parameters for improved surface finish in stereolithography, Int. J. Mach. Tools Manuf., 38, 329, 10.1016/S0890-6955(97)00068-0
Vijay, 2014, Optimization of surface roughness in selective laser sintered stainless steel parts, Int. J. ChemTech Res., 6, 2993
Vijay, 2012, Critical parameters effecting the rapid prototyping surface finish, J. Mech. Eng. Autom., 1, 17, 10.5923/j.jmea.20110101.03
Armillotta, 2006, Assessment of surface quality on textured FDM prototypes, Rapid Prototyp. J., 12, 35, 10.1108/13552540610637255
Sood, 2009, Improving dimensional accuracy of fused deposition modelling processed part using grey Taguchi method, Mater. Des., 30, 4243, 10.1016/j.matdes.2009.04.030
Saqib, 2012, An experimental study to determine geometric and dimensional accuracy impact factors for fused deposition modelled parts, 293
Volpato, 2014, The influence of support base on FDM accuracy in Z, Rapid Prototyp. J., 20, 2, 10.1108/RPJ-12-2012-0116
Sood, 2010, Parametric appraisal of mechanical property of fused deposition modelling processed parts, Mater. Des., 31, 287, 10.1016/j.matdes.2009.06.016
Equbal, 2011, Prediction of dimensional accuracy in fused deposition modelling: a fuzzy logic approach, Int. J. Prod. Quality Manage., 7, 22, 10.1504/IJPQM.2011.037730
Kumar, 2011, Optimization of support material and build time in fused deposition modeling (FDM), Appl. Mech. Mater., 110–116, 2245, 10.4028/www.scientific.net/AMM.110-116.2245
Durgun, 2014, Experimental investigation of FDM process for improvement of mechanical properties and production cost, Rapid Prototyp. J., 20, 228, 10.1108/RPJ-10-2012-0091
Gibson, 1997, Material properties and fabrication parameters in selective laser sintering process, Rapid Prototyp. J., 3, 129, 10.1108/13552549710191836
Chockalingam, 2005, Optimization of stereolithography process parameters for part strength using design of experiments, Int. J. Adv. Manuf. Technol., 29, 79
Ajoku, 2006, Investigating mechanical anisotropy and end-of-vector effect in laser-sintered nylon parts, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 220, 1077, 10.1243/09544054JEM537
Lee, 2007, Measurement of anisotropic compressive strength of rapid prototyping parts, J. Mater. Process. Technol., 187–188, 627, 10.1016/j.jmatprotec.2006.11.095
Quintana, 2010, Effects of build orientation on tensile strength for stereolithography-manufactured ASTM D-638 type i specimens, Int. J. Adv. Manuf. Technol., 46, 201, 10.1007/s00170-009-2066-z
Majewski, 2011, Effect of section thickness and build orientation on tensile properties and material characteristics of laser sintered nylon-12 parts, Rapid Prototyp. J., 17, 176, 10.1108/13552541111124743
Ang, 2006, Investigation of the mechanical properties and porosity relationships in fused deposition modelling-fabricated porous structures, Rapid Prototyp. J., 12, 100, 10.1108/13552540610652447
Sood, 2012, Experimental investigation and empirical modelling of FDM process for compressive strength improvement, J. Adv. Res., 3, 81, 10.1016/j.jare.2011.05.001
Kotliniski, 2014, Mechanical properties of commercial rapid prototyping materials, Rapid Prototyp. J., 20, 499, 10.1108/RPJ-06-2012-0052
Anitha, 2001, Critical parameters influencing the quality of prototypes in fused deposition modelling, J. Mater. Process. Technol., 118, 2, 10.1016/S0924-0136(01)00980-3
Bellini, 2003, Mechanical characterization of parts fabricated using fused deposition modeling, Rapid Prototyp. J., 9, 252, 10.1108/13552540310489631
R.H. Hambali, H.K. Celik, P.C. Smith, et al., Effect of build orientation on FDM parts: a case study for validation of deformation behaviour by FEA, in: International Conference on Design and Concurrent Engineering (iDECON 2010): Manufacturing Challenges Towards Global Sustainability, 2010, pp. 20–21. <http://eprints.lancs.ac.uk/id/eprint/50979>. (accessed 24.10.13).
A.S. El-Gizawy, S. Corl, B. Graybill, Process-induced properties of FDM products, in: Proceedings of the ICMET, International Conference on Mechanical Engineering’s and Technology Congress & Exposition, 2011.
Ahn, 2002, Anisotropic material properties of fused deposition modeling ABS, Rapid Prototyp. J., 8, 248, 10.1108/13552540210441166
Puebla, 2012, Effects of environmental conditions, aging, and build orientations on the mechanical properties of ASTM type I specimens manufactured via stereolithography, Rapid Prototyp. J., 18, 374, 10.1108/13552541211250373
Jain, 2015, Experimental investigations for improving part strength in selective laser sintering, Virtual Phys. Prototyp., 2008, 177, 10.1080/17452750802065893
Fodran, 1996, Mechanical and dimensional characteristics of fused deposition modeling build styles, 419
A. Bagsik, V. Schöoppner, Mechanical properties of fused deposition modeling parts manufactured with ULTEM 9085. ANTEC 2011 Plast Annu Tech Conf Proc, 2011.
Stratasys, PC (Polycarbonate), 2014.
Stratasys, PC-ABS, 2014.
Jain, 2009, Effect of delay time on part strength in selective laser sintering, Int. J. Adv. Manuf. Technol., 43, 117, 10.1007/s00170-008-1682-3
Stratasys, Characterization of Material Properties for Fortus Polycarbonate (PC), 2014.
Boschetto, 2011, Modelling micro geometrical profiles in fused deposition process, Int. J. Adv. Manuf. Technol., 61, 945
Domingo-Espin, 2014, Influence of building parameters on the dynamic mechanical properties of polycarbonate fused deposition modeling parts, 3D Print Addit. Manuf., 1, 70, 10.1089/3dp.2013.0007
Sun, 2008, Effect of processing conditions on the bonding quality of FDM polymer filaments, Rapid Prototyp. J., 14, 72, 10.1108/13552540810862028
Joe Hiemenz, 3D Printing With Fdm, 2011, pp. 1–5, <http://www.stratasys.com/~/media/Main/Files/WhitePapers/SSYS-WP-3DP-HowItWorks-09-11.ashx>.
Ziemian, 2012, Anisotropic mechanical properties of abs parts fabricated by fused deposition modelling