Dự đoán thuộc tính cơ học của bê tông geopolymer dựa trên metakaolin và tro bay bằng cách sử dụng SVR

Bheem Pratap1, Sanjay Sharma1, Pooja Kumari2, Sumit Raj3
1Department of Civil Engineering, National Institute of Technology Jamshedpur, Jamshedpur, India
2Department of Electrical Engineering, National Institute of Technology Jamshedpur, Jamshedpur, India
3Department of Computer Science and Engineering, National Institute of Technology Jamshedpur, Jamshedpur, India

Tóm tắt

Lĩnh vực vật liệu xây dựng và hạ tầng bền vững đã chứng kiến một sự chuyển mình đáng kể hướng tới các lựa chọn thân thiện với môi trường. Geopolymer, như một lớp vật liệu mới nổi, đã thu hút được sự chú ý lớn do tính chất thân thiện với môi trường và các tính chất cơ học của nó. Một trong những thành phần chính trong các công thức geopolymer là metakaolin, một vật liệu aluminosilicate được kích hoạt nhiệt, được chiết xuất từ đất sét kaolin. Bài báo này tiến hành khám phá sâu về các ứng dụng đa dạng của tro bay và metakaolin trong bê tông geopolymer, nhấn mạnh những đóng góp của nó cho ngành xây dựng, tính bền vững môi trường và các tiến bộ công nghệ. Trong cuộc điều tra này, tro bay được thay thế với các tỷ lệ khác nhau là 0%, 10%, 20%, 30% và 40% trong các nồng độ mol NaOH lần lượt là 1 M, 3 M, 5 M và 7 M. Mục tiêu là đánh giá các đặc tính cơ học của bê tông geopolymer được hình thành mới. Xem xét kịch bản nơi mà nồng độ NaOH được giữ ở 5 M. Trong trường hợp này, cường độ nén của một bê tông geopolymer (FM2), có 20% metakaolin, đã cho thấy cường độ nén tối đa là 55.28 MPa. Đáng chú ý, ảnh hưởng của metakaolin trong việc tăng cường cường độ nén dường như rõ rệt nhất khi được sử dụng làm chất thay thế ở tỷ lệ 20%.

Từ khóa

#geopolymer #metakaolin #tro bay #bê tông geopolymer #cường độ nén #vật liệu xây dựng #bền vững môi trường

Tài liệu tham khảo

Yin S, Yan Z, Chen X, Wang L (2022) Effect of fly-ash as fine aggregate on the workability and mechanical properties of cemented paste backfill. Case Stud Constr Mater 16:e01039. https://doi.org/10.1016/j.cscm.2022.e01039 Vesmawala GR, Patil YD, Patil MV (2018) A study on properties and effects of copper slag and marble dust in concrete. Int J Struct Eng 9(2):91. https://doi.org/10.1504/IJSTRUCTE.2018.10014089 Huang Y, Huo Z, Ma G, Zhang L, Wang F, Zhang J (2023) Multi-objective optimization of fly ash-slag based geopolymer considering strength, cost and CO2 emission: a new framework based on tree-based ensemble models and NSGA-II. J Build Eng 68:106070. https://doi.org/10.1016/j.jobe.2023.106070 Pratap B, Mondal S, Hanumantha Rao B (2023) Synthesis of alkali-activated mortar using phosphogypsum-neutralised bauxite residue. Environ Geotech 1–12. https://doi.org/10.1680/jenge.22.00104 Yousefi Oderji S, Chen B, Ahmad MR, Shah SFA (2019) Fresh and hardened properties of one-part fly ash-based geopolymer binders cured at room temperature: Effect of slag and alkali activators. J Clean Prod 225:1–10. https://doi.org/10.1016/j.jclepro.2019.03.290 Bellum RR, Muniraj K, Indukuri CSR, Madduru SRC (2020) Investigation on performance enhancement of fly ash-GGBFS based Graphene Geopolymer concrete. J Build Eng 32:101659. no. February10.1016/j.jobe.2020.101659 Hamdane H et al (2020) Effect of alkali-mixed content and thermally untreated phosphate sludge dosages on some properties of metakaolin based geopolymer material. Mater Chem Phys 248:122938. https://doi.org/10.1016/j.matchemphys.2020.122938. March Hemra K, Aungkavattana P (2016) Effect of cordierite addition on compressive strength and thermal stability of metakaolin based geopolymer. Adv Powder Technol 27(3):1021–1026. https://doi.org/10.1016/j.apt.2016.04.019 Liu J, Li X, Lu Y, Bai X (2020) Effects of Na/Al ratio on mechanical properties and microstructure of red mud-coal metakaolin geopolymer. Constr Build Mater 263:120653. https://doi.org/10.1016/j.conbuildmat.2020.120653 Asghar R, Khan MA, Alyousef R, Javed MF, Ali M (2023) Promoting the green construction: Scientometric review on the mechanical and structural performance of geopolymer concrete. Constr Build Mater 368:130502. https://doi.org/10.1016/j.conbuildmat.2023.130502 Kanneboina YY, Jothi Saravanan T, Kabeer KISA, Bisht K (2023) Valorization of lead and zinc slags for the production of construction materials - a review for future research direction. Constr Build Mater 367:130314. https://doi.org/10.1016/j.conbuildmat.2023.130314 Al-Fakih A, Mahamood MAA, Al-Osta MA, Ahmad S (2023) Performance and efficiency of self-healing geopolymer technologies: a review. Constr Build Mater 386:131571. https://doi.org/10.1016/j.conbuildmat.2023.131571 Pouhet R, Cyr M (2016) Formulation and performance of flash metakaolin geopolymer concretes. Constr Build Mater 120:150–160. https://doi.org/10.1016/j.conbuildmat.2016.05.061 He J, Zhang J, Yu Y, Zhang G (2012) The strength and microstructure of two geopolymers derived from metakaolin and red mud-fly ash admixture: a comparative study. Constr Build Mater 30:80–91. https://doi.org/10.1016/j.conbuildmat.2011.12.011 Albidah A, Alqarni AS, Abbas H, Almusallam T, Al-Salloum Y (2021) “Behavior of Metakaolin-Based geopolymer concrete at ambient and elevated temperatures,” Constr. Build. Mater, vol. 317, no. November 2022, https://doi.org/10.1016/j.conbuildmat.2021.125910 Kaya-Özkiper K, Uzun A, Soyer-Uzun S (2021) Red mud- and metakaolin-based geopolymers for adsorption and photocatalytic degradation of methylene blue: towards self-cleaning construction materials, vol 288. Elsevier Ltd. https://doi.org/10.1016/j.jclepro.2020.125120 Şahin F, Uysal M, Canpolat O (2021) Systematic evaluation of the aggregate types and properties on metakaolin based geopolymer composites. Constr Build Mater 278. https://doi.org/10.1016/j.conbuildmat.2021.122414 Albidah AS (2021) Effect of partial replacement of geopolymer binder materials on the fresh and mechanical properties: a review. Ceram Int no December 2020. https://doi.org/10.1016/j.ceramint.2021.02.127 Shehata N, Sayed ET, Abdelkareem MA (2021) Recent progress in environmentally friendly geopolymers: a review. Sci Total Environ 762:143166. https://doi.org/10.1016/j.scitotenv.2020.143166 Zhang HY, Liu JC, Wu B (2021) Mechanical properties and reaction mechanism of one-part geopolymer mortars. Constr Build Mater 273. https://doi.org/10.1016/j.conbuildmat.2020.121973 Assi LN, Carter K, Deaver E, Ziehl P (2020) Review of availability of source materials for geopolymer/sustainable concrete. J Clean Prod 263:121477. https://doi.org/10.1016/j.jclepro.2020.121477 Shi J et al (2020) Preparation and characterization of lightweight aggregate foamed geopolymer concretes aerated using hydrogen peroxide. Constr Build Mater 256:119442. https://doi.org/10.1016/j.conbuildmat.2020.119442 Weng L, Sagoe-Crentsil K (2007) Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: Part I-Low Si/Al ratio systems. J Mater Sci 42(9):2997–3006. https://doi.org/10.1007/s10853-006-0820-2 Pratap B, Mondal S, Rao BH (Jun. 2023) Mechanical and durability analysis of geopolymer concrete incorporating bauxite residue, phosphogypsum, and ground granulated blast slag. Asian J Civ Eng. https://doi.org/10.1007/s42107-023-00777-0 Pratap B, Shubham K, Mondal S, Hanumantha B (2023) Exploring the potential of neural network in assessing mechanical properties of geopolymer concrete incorporating fly ash and phosphogypsum in pavement applications. Asian J Civ Eng 012345678910.1007/s42107-023-00735-w Pratap B, Mondal S, Rao BH (2023) NaOH molarity influence on mechanical and durability properties of geopolymer concrete made with fly ash and phosphogypsum. Structures 56:105035. https://doi.org/10.1016/j.istruc.2023.105035 Pratap B, Mondal S, Hanumantha Rao B (2023) “Development of geopolymer concrete using fly ash and phosphogypsum as a pavement composite material,” Mater. Today Proc, no. xxxx, pp. 10–15, https://doi.org/10.1016/j.matpr.2023.06.207 Kumar P, Pratap B, Sharma S, Kumar I (2023) Compressive strength prediction of fly ash and blast furnace slag – based geopolymer concrete using convolutional neural network. Asian J Civ Eng 012345678910.1007/s42107-023-00861-5 Pratap B, Mondal S, Hanumantha B (2023) Prediction of compressive strength of bauxite residue – based geopolymer mortar as pavement composite materials: an integrated ANN and RSM approach. Asian J Civ Eng 012345678910.1007/s42107-023-00797-w Pratap B, Kumar P, Shubham K, Chaudhary N (2023) Soft computing-based investigation of mechanical properties of concrete using ready-mix concrete waste water as partial replacement of mixing portable water. Asian J Civ Eng 012345678910.1007/s42107-023-00841-9 Sahu A, Kumar S, Bheem AKLS (2023) Machine learning approach to study the mechanical properties of recycled aggregate concrete using copper slag at elevated temperature. Asian J Civ Eng 012345678910.1007/s42107-023-00821-z IS 516 (1959) Method of tests for strength of concrete, Bur Indian Stand, pp. 1–30, Nath P, Sarker PK (2017) Flexural strength and elastic modulus of ambient-cured blended low-calcium fly ash geopolymer concrete. Constr Build Mater 130:22–31. https://doi.org/10.1016/j.conbuildmat.2016.11.034 IS 5816 – 1999 (1999) Indian standard splitting tensile strength of concrete- method of test, Bur Indian Stand, pp. 1–14, John SK, Nadir Y, Girija K (2021) Effect of source materials, additives on the mechanical properties and durability of fly ash and fly ash-slag geopolymer mortar: a review. Constr Build Mater 280:122443. https://doi.org/10.1016/j.conbuildmat.2021.122443 Kumar P, Pratap B (2023) Feature engineering for predicting compressive strength of high – strength concrete with machine learning models. Asian J Civ Eng 012345678910.1007/s42107-023-00807-x Deb PS, Nath P, Sarker PK (2014) The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature. Mater Des 62:32–39. https://doi.org/10.1016/j.matdes.2014.05.001 Talkeri A, Ravi Shankar AU (2022) Alkali activated slag-fly ash concrete incorporating precious slag as fine aggregate for rigid pavements. J Traffic Transp Eng (English Ed 9(1):78–92. https://doi.org/10.1016/j.jtte.2021.05.001 Nath P, Sarker PK (2015) Use of OPC to improve setting and early strength properties of low calcium fly ash geopolymer concrete cured at room temperature. Cem Concr Compos 55:205–214. https://doi.org/10.1016/j.cemconcomp.2014.08.008 Karaaslan C, Yener E, Bağatur T, Polat R (July, 2022) Improving the durability of pumice-fly ash based Geopolymer concrete with calcium aluminate cement. J Build Eng 59. https://doi.org/10.1016/j.jobe.2022.105110 Jumaa NH, Ali IM, Nasr MS, Falah MW (2022) Strength and microstructural properties of binary and ternary blends in fly ash-based geopolymer concrete. Case Stud Constr Mater 17:e01317. https://doi.org/10.1016/j.cscm.2022.e01317 Li S, Zhang J, Li Z, Gao Y, Liu C (2021) Feasibility study of red mud-blast furnace slag based geopolymeric grouting material: Effect of superplasticizers. Constr Build Mater 267:120910. https://doi.org/10.1016/j.conbuildmat.2020.120910 Xie T, Ozbakkaloglu T (2015) Behavior of low-calcium fly and bottom ash-based geopolymer concrete cured at ambient temperature. Ceram Int 41(4):5945–5958. https://doi.org/10.1016/j.ceramint.2015.01.031 Geng J et al (2017) “Preparation of blended geopolymer from red mud and coal gangue with mechanical co-grinding preactivation,” Mater. Struct. Constr, vol. 50, no. 2, pp. 1–11, https://doi.org/10.1617/s11527-016-0967-5 Xu G, Shi X (2017) “Characteristics and applications of fly ash as a sustainable construction material: A state-of-the-art review,” Resour. Conserv. Recycl, vol. 136, no. August pp. 95–109, 2018, https://doi.org/10.1016/j.resconrec.2018.04.010 Özcan A, Karakoç MB (2019) The resistance of blast furnace slag- and ferrochrome slag-based geopolymer concrete against Acid Attack. Int J Civ Eng 17(10):1571–1583. https://doi.org/10.1007/s40999-019-00425-2 Vafaei M, Allahverdi A, Dong P, Bassim N, Mahinroosta M (2019) “Resistance of red clay brick waste/phosphorus slag-based geopolymer mortar to acid solutions of mild concentration,” J. Build. Eng, vol. 34, no. November p. 102066, 2021, https://doi.org/10.1016/j.jobe.2020.102066 Provis JL, Van Deventer JSJ (1940) “Introduction to geopolymers,” Geopolymers Struct. Process. Prop. Ind. Appl, no. pp. 1–11, 2009, https://doi.org/10.1533/9781845696382.1 Ismail N, El-Hassan H (2018) Development and characterization of fly Ash–Slag blended Geopolymer Mortar and Lightweight concrete. J Mater Civ Eng 30(4):1–14. https://doi.org/10.1061/(asce)mt.1943-5533.0002209 Okoye FN, Durgaprasad J, Singh NB (2016) Effect of silica fume on the mechanical properties of fly ash based-geopolymer concrete. Ceram Int 42(2):3000–3006. https://doi.org/10.1016/j.ceramint.2015.10.084 Muraleedharan M, Nadir Y (2021) Factors affecting the mechanical properties and microstructure of geopolymers from red mud and granite waste powder: a review. Ceram Int no January. https://doi.org/10.1016/j.ceramint.2021.02.009 Fernando S, Gunasekara C, Law DW, Nasvi MCM, Setunge S, Dissanayake R (2023) Assessment of long term durability properties of blended fly ash-rice husk ash alkali activated concrete. Constr Build Mater 369:130449. https://doi.org/10.1016/j.conbuildmat.2023.130449 Hardjito D, Rangan BV (2005) “Development and properties of low-calcium fly ash-based geopolymer concrete,” Res. Rep. GC, p. 94, [Online]. Available: http://www.geopolymer.org/fichiers_pdf/curtin-flyash-GP-concrete-report.pdf Muthukrishnan S, Ramakrishnan S, Sanjayan J (2020) “Effect of alkali reactions on the rheology of one-part 3D printable geopolymer concrete,” Cem. Concr. Compos, vol. 116, no. August p. 103899, 2021, https://doi.org/10.1016/j.cemconcomp.2020.103899 Hassan A, Arif M, Shariq M (2020) A review of properties and behaviour of reinforced geopolymer concrete structural elements- A clean technology option for sustainable development. J Clean Prod 245. https://doi.org/10.1016/j.jclepro.2019.118762 Geng JJ et al (2017) Comparison of red mud and coal gangue blended geopolymers synthesized through thermal activation and mechanical grinding preactivation. Constr Build Mater 153:185–192. https://doi.org/10.1016/j.conbuildmat.2017.07.045 Kaveh SMH-Z, Bakhshpoori A (2018) GMDH-based prediction of shear strength of FRP-RC beams with and without stirrups. Comput Concr An Int J 22(2):197–207 Kaveh A, Gholipour Y, Rahami H (2008) Optimal design of transmission towers using genetic algorithm and neural networks. Int J Sp Struct 23(1):1–19. https://doi.org/10.1260/026635108785342073 Kaveh A, Khavaninzadeh N (2023) “Efficient training of two ANNs using four meta-heuristic algorithms for predicting the FRP strength,” Structures, vol. 52, no. February, pp. 256–272, https://doi.org/10.1016/j.istruc.2023.03.178 Kaveh A, Iranmanesh A (1998) Comparative study of Backpropagation and Improved Counterpropagation Neural Nets in structural analysis and optimization. Int J Sp Struct 13(4):177–185. https://doi.org/10.1177/026635119801300401