Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tính chất cơ học của các vật liệu hai chiều và cấu trúc dị hợp
Tóm tắt
Tính chất cơ học rất quan trọng trong khoa học và công nghệ vật liệu, và đóng vai trò lớn trong nhiều ứng dụng vật liệu trong lịch sử nhân loại. Tuy nhiên, việc đo lường các tính chất cơ học của các vật liệu hai chiều (2D) là một thách thức đặc biệt. Mặc dù nhiều loại vật liệu 2D đã được nghiên cứu sâu rộng trong những năm gần đây, việc điều tra các tính chất cơ học của chúng vẫn chậm hơn so với các tính chất khác, dẫn đến nhiều câu hỏi mở và thách thức trong lĩnh vực nghiên cứu này. Trong bài tổng quan này, chúng tôi trước tiên giới thiệu kỹ thuật nanoindentation kết hợp với kính hiển vi lực nguyên tử để đo lường các tính chất đàn hồi của graphene và các hợp kim hai chiều của kim loại chuyển tiếp. Sau đó, chúng tôi xét đến ảnh hưởng của các khuyết tật đối với tính chất cơ học của các vật liệu 2D, bao gồm các nghiên cứu về các vật liệu 2D có khuyết tật tự nhiên và các vật liệu 2D có khuyết tật cố ý do hơi hóa học cung cấp. Cuối cùng, chúng tôi giới thiệu một thiết bị nano-điện cơ học, các bộ cộng hưởng, được xây dựng dựa trên các tính chất cơ học xuất sắc của các vật liệu 2D.
Từ khóa
#tính chất cơ học #vật liệu hai chiều #graphene #hợp kim kim loại chuyển tiếp #nanoindentation #kính hiển vi lực nguyên tửTài liệu tham khảo
M.M.J. Treacy, T.W. Ebbesen, and J.M. Gibson: Exceptionally high young’s modulus observed for individual carbon nanotubes. Nature 381(6584), 678 (1996).
E.W. Wong, P.E. Sheehan, and C.M. Lieber: Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 277(5334), 1971 (1997).
C. Lee, X.D. Wei, J.W. Kysar, and J. Hone: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385 (2008).
Y.J. Tian, B. Xu, D.L. Yu, Y.M. Ma, Y.B. Wang, Y.B. Jiang, W.T. Hu, C.C. Tang, Y.F. Gao, K. Luo, Z.S. Zhao, L.M. Wang, B. Wen, J.L. He, and Z.Y. Liu: Ultrahard nanotwinned cubic boron nitride. Nature 493(7432), 385 (2013).
U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, and H. Morkoc: A comprehensive review of zno materials and devices. J. Appl. Phys. 98(4), 103 (2005).
J.Q. Wu: When group-iii nitrides go infrared: New properties and perspectives. J. Appl. Phys. 106(1), 011101 (2009).
Y.G. Sun and J.A. Rogers: Inorganic semiconductors for flexible electronics. Adv. Mater. 19(15), 1897 (2007).
J.A. Rogers, T. Someya, and Y.G. Huang: Materials and mechanics for stretchable electronics. Science 327(5973), 1603 (2010).
D.H. Kim, N.S. Lu, R. Ma, Y.S. Kim, R.H. Kim, S.D. Wang, J. Wu, S.M. Won, H. Tao, A. Islam, K.J. Yu, T.I. Kim, R. Chowdhury, M. Ying, L.Z. Xu, M. Li, H.J. Chung, H. Keum, M. McCormick, P. Liu, Y.W. Zhang, F.G. Omenetto, Y.G. Huang, T. Coleman, and J.A. Rogers: Epidermal electronics. Science 333(6044), 838 (2011).
H.W. Kroto, J.R. Heath, S.C. Obrien, R.F. Curl, and R.E. Smalley: C-60-buckminsterfullerene. Nature 318(6042), 162 (1985).
S. Iijima: Helical microtubules of graphitic carbon. Nature 354(6348), 56 (1991).
A.P. Alivisatos: Semiconductor clusters, nanocrystals, and quantum dots. Science 271(5251), 933 (1996).
H.J. Dai: Carbon nanotubes: Synthesis, integration, and properties. Accounts Chem. Res. 35(12), 1035 (2002).
Y.N. Xia, P.D. Yang, Y.G. Sun, Y.Y. Wu, B. Mayers, B. Gates, Y.D. Yin, F. Kim, and Y.Q. Yan: One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15(5), 353 (2003).
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov: Electric field effect in atomically thin carbon films. Science 306(5696), 666 (2004).
K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, and A.K. Geim: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U. S. A. 102(30), 10451 (2005).
S.Z. Butler, S.M. Hollen, L.Y. Cao, Y. Cui, J.A. Gupta, H.R. Gutierrez, T.F. Heinz, S.S. Hong, J.X. Huang, A.F. Ismach, E. Johnston-Halperin, M. Kuno, V.V. Plashnitsa, R.D. Robinson, R.S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M.G. Spencer, M. Terrones, W. Windl, and J.E. Goldberger: Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7(4), 2898 (2013).
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, and A.A. Firsov: Two-dimensional gas of massless dirac fermions in graphene. Nature 438(7065), 197 (2005).
K.F. Mak, C. Lee, J. Hone, J. Shan, and T.F. Heinz: Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105(13), 4 (2010).
A. Splendiani, L. Sun, Y.B. Zhang, T.S. Li, J. Kim, C.Y. Chim, G. Galli, and F. Wang: Emerging photoluminescence in monolayer MoS2. Nano Lett. 10(4), 1271 (2010).
Y.B. Zhang, Y.W. Tan, H.L. Stormer, and P. Kim: Experimental observation of the quantum hall effect and berry’s phase in graphene. Nature 438(7065), 201 (2005).
M. Liu, X.B. Yin, E. Ulin-Avila, B.S. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang: A graphene-based broadband optical modulator. Nature 474(7349), 64 (2011).
L. Ju, B.S. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H.A. Bechtel, X.G. Liang, A. Zettl, Y.R. Shen, and F. Wang: Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 6(10), 630 (2011).
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis: Single-layer MoS2 transistors. Nat. Nanotechnol. 6(3), 147 (2011).
D. Xiao, G.B. Liu, W.X. Feng, X.D. Xu, and W. Yao: Coupled spin and valley physics in monolayers of MoS2 and other group-vi dichalcogenides. Phys. Rev. Lett. 108(19), 5 (2012).
K.F. Mak, K.L. He, C. Lee, G.H. Lee, J. Hone, T.F. Heinz, and J. Shan: Tightly bound trions in monolayer MoS2. Nat. Mater. 12(3), 207 (2013).
Z.L. Ye, T. Cao, K. O’Brien, H.Y. Zhu, X.B. Yin, Y. Wang, S.G. Louie, and X. Zhang: Probing excitonic dark states in single-layer tungsten disulphide. Nature 513(7517), 214 (2014).
J. Kim, X.P. Hong, C.H. Jin, S.F. Shi, C.Y.S. Chang, M.H. Chiu, L.J. Li, and F. Wang: Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346(6214), 1205 (2014).
M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, and R.S. Ruoff: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453), 637 (2000).
X.D. Han, K. Zheng, Y.F. Zhang, X.N. Zhang, Z. Zhang, and Z.L. Wang: Low-temperature in situ large-strain plasticity of silicon nanowires. Adv. Mater. 19(16), 2112 (2007).
Y. Zhu, F. Xu, Q.Q. Qin, W.Y. Fung, and W. Lu: Mechanical properties of vapor-liquid-solid synthesized silicon nanowires. Nano Lett. 9(11), 3934 (2009).
K.T. Wan, S. Guo, and D.A. Dillard: A theoretical and numerical study of a thin clamped circular film under an external load in the presence of a tensile residual stress. Thin Solid Films 425(1–2), 150 (2003).
U. Komaragiri, M.R. Begley, and J.G. Simmonds: The mechanical response of freestanding circular elastic films under point and pressure loads. J. Appl. Mech. 72(2), 203 (2005).
O.L. Blakslee: Elastic constants of compression-annealed pyrolytic graphite. J. Appl. Phys. 41(8), 3373 (1970).
H. Zhao, K. Min, and N.R. Aluru: Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. Nano Lett. 9(8), 3012 (2009).
G. Van Lier, C. Van Alsenoy, V. Van Doren, and P. Geerlings: Ab initio study of the elastic properties of single-walled carbon nanotubes and graphene. Chem. Phys. Lett. 326(1–2), 181 (2000).
F. Liu, P.M. Ming, and J. Li: Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys. Rev. B. 76(6), 7 (2007).
N.M. Bhatia and W. Nachbar: Finite indentation of elastic-perfectly plastic membranes by a spherical indenter. Int. J. NonLinear Mech. 3(3), 307 (1968).
P.Y. Huang, C.S. Ruiz-Vargas, A.M. van der Zande, W.S. Whitney, M.P. Levendorf, J.W. Kevek, S. Garg, J.S. Alden, C.J. Hustedt, Y. Zhu, J. Park, P.L. McEuen, and D.A. Muller: Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469(7330), 389 (2011).
R. Dettori, E. Cadelano, and L. Colombo: Elastic fields and moduli in defected graphene. J. Phys.: Condens. Matter 24(10), 10 (2012).
N.N. Jing, Q.Z. Xue, C.C. Ling, M.X. Shan, T. Zhang, X.Y. Zhou, and Z.Y. Jiao: Effect of defects on Young’s modulus of graphene sheets: A molecular dynamics simulation. RSC Adv. 2(24), 9124 (2012).
R. Grantab, V.B. Shenoy, and R.S. Ruoff: Anomalous strength characteristics of tilt grain boundaries in graphene. Science 330(6006), 946 (2010).
J. Wei, J.T. Wu, H.Q. Yin, X.H. Shi, R.G. Yang, and M. Dresselhaus: The nature of strength enhancement and weakening by pentagon-heptagon defects in graphene. Nat. Mater. 11(9), 759 (2012).
J.H. Warner, E.R. Margine, M. Mukai, A.W. Robertson, F. Giustino, and A.I. Kirkland: Dislocation-driven deformations in graphene. Science 337(6091), 209 (2012).
X.S. Li, W.W. Cai, J.H. An, S. Kim, J. Nah, D.X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, and R.S. Ruoff: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932), 1312 (2009).
A. Reina, X.T. Jia, J. Ho, D. Nezich, H.B. Son, V. Bulovic, M.S. Dresselhaus, and J. Kong: Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9(1), 30 (2009).
G.H. Lee, R.C. Cooper, S.J. An, S. Lee, A. van der Zande, N. Petrone, A.G. Hammerherg, C. Lee, B. Crawford, W. Oliver, J.W. Kysar, and J. Hone: High-strength chemical-vapor deposited graphene and grain boundaries. Science 340(6136), 1073 (2013).
A.W. Tsen, L. Brown, M.P. Levendorf, F. Ghahari, P.Y. Huang, R.W. Havener, C.S. Ruiz-Vargas, D.A. Muller, P. Kim, and J. Park: Tailoring electrical transport across grain boundaries in polycrystalline graphene. Science 336(6085), 1143 (2012).
Q.K. Yu, L.A. Jauregui, W. Wu, R. Colby, J.F. Tian, Z.H. Su, H.L. Cao, Z.H. Liu, D. Pandey, D.G. Wei, T.F. Chung, P. Peng, N.P. Guisinger, E.A. Stach, J.M. Bao, S.S. Pei, and Y.P. Chen: Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat. Mater. 10(6), 443 (2011).
K. Kim, Z. Lee, W. Regan, C. Kisielowski, M.F. Crommie, and A. Zettl: Grain boundary mapping in polycrystalline graphene. ACS Nano 5(3), 2142 (2011).
C.S. Ruiz-Vargas, H.L.L. Zhuang, P.Y. Huang, A.M. van der Zande, S. Garg, P.L. McEuen, D.A. Muller, R.G. Hennig, and J. Park: Softened elastic response and unzipping in chemical vapor deposition graphene membranes. Nano Lett. 11(6), 2259 (2011).
Q.Y. Lin, G. Jing, Y.B. Zhou, Y.F. Wang, J. Meng, Y.Q. Bie, D.P. Yu, and Z.M. Liao: Stretch-induced stiffness enhancement of graphene grown by chemical vapor deposition. ACS Nano 7(2), 1171 (2013).
A. Zandiatashbar, G.H. Lee, S.J. An, S. Lee, N. Mathew, M. Terrones, T. Hayashi, C.R. Picu, J. Hone, and N. Koratkar: Effect of defects on the intrinsic strength and stiffness of graphene. Nat. Commun. 5, 3186 (2014).
G. Lopez-Polin, C. Gomez-Navarro, V. Parente, F. Guinea, M.I. Katsnelson, F. Perez-Murano, and J. Gomez-Herrero: Increasing the elastic modulus of graphene by controlled defect creation. Nat. Phys. 11(1), 26 (2015).
M.M. Lucchese, F. Stavale, E.H.M. Ferreira, C. Vilani, M.V.O. Moutinho, R.B. Capaz, C.A. Achete, and A. Jorio: Quantifying ion-induced defects and raman relaxation length in graphene. Carbon 48(5), 1592 (2010).
L.G. Cancado, A. Jorio, E.H.M. Ferreira, F. Stavale, C.A. Achete, R.B. Capaz, M.V.O. Moutinho, A. Lombardo, T.S. Kulmala, and A.C. Ferrari: Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 11(8), 3190 (2011).
Y.W. Zhu, S. Murali, W.W. Cai, X.S. Li, J.W. Suk, J.R. Potts, and R.S. Ruoff: Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 22(35), 3906 (2010).
K. Liu, C-L. Hsin, D. Fu, J. Suh, S. Tongay, M. Chen, Y. Sun, A. Yan, J. Park, K.M. Yu, W. Guo, A. Zettl, H. Zheng, D.C. Chrzan, and J. Wu: Self-passivation of defects: Effects of high-energy particle irradiation on elastic modulus of multilayer graphene. Adv. Mater. (2015), doi: https://doi.org/10.1002/adma.201501752.
A.K. Geim: Graphene: Status and prospects. Science 324(5934), 1530 (2009).
A.K. Geim and I.V. Grigorieva: van der Waals heterostructures. Nature 499(7459), 419 (2013).
O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis: Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8(7), 497 (2013).
Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, and M.S. Strano: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnol. 7(11), 699 (2012).
Q.Y. He, Z.Y. Zeng, Z.Y. Yin, H. Li, S.X. Wu, X. Huang, and H. Zhang: Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. Small 8(19), 2994 (2012).
J. Pu, Y. Yomogida, K.K. Liu, L.J. Li, Y. Iwasa, and T. Takenobu: Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett. 12(8), 4013 (2012).
H.Y. Chang, S.X. Yang, J.H. Lee, L. Tao, W.S. Hwang, D. Jena, N.S. Lu, and D. Akinwande: High-performance, highly bendable MoS2 transistors with high-k dielectrics for flexible low-power systems. ACS Nano 7(6), 5446 (2013).
D. Akinwande, N. Petrone, and J. Hone: Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 12 (2014).
S. Bertolazzi, J. Brivio, and A. Kis: Stretching and breaking of ultrathin MoS2. ACS Nano 5(12), 9703 (2011).
A. Castellanos-Gomez, M. Poot, G.A. Steele, H.S.J. van der Zant, N. Agrait, and G. Rubio-Bollinger: Elastic properties of freely suspended MoS2 nanosheets. Adv. Mater. 24(6), 772 (2012).
J.L. Feldman: Elastic-constants of 2h-MoS2 and 2h-NbSe2 extracted from measured dispersion curves and linear compressibilities. J. Phys. Chem. Solids 37(12), 1141 (1976).
Y.H. Lee, X.Q. Zhang, W.J. Zhang, M.T. Chang, C.T. Lin, K.D. Chang, Y.C. Yu, J.T.W. Wang, C.S. Chang, L.J. Li, and T.W. Lin: Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24(17), 2320 (2012).
K.K. Liu, W.J. Zhang, Y.H. Lee, Y.C. Lin, M.T. Chang, C. Su, C.S. Chang, H. Li, Y.M. Shi, H. Zhang, C.S. Lai, and L.J. Li: Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 12(3), 1538 (2012).
S. Najmaei, Z. Liu, W. Zhou, X.L. Zou, G. Shi, S.D. Lei, B.I. Yakobson, J.C. Idrobo, P.M. Ajayan, and J. Lou: Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 12(8), 754 (2013).
A.M. van der Zande, P.Y. Huang, D.A. Chenet, T.C. Berkelbach, Y.M. You, G.H. Lee, T.F. Heinz, D.R. Reichman, D.A. Muller, and J.C. Hone: Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 12(6), 554 (2013).
K. Kang, S.E. Xie, L.J. Huang, Y.M. Han, P.Y. Huang, K.F. Mak, C.J. Kim, D. Muller, and J. Park: High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520(7549), 656 (2015).
K. Liu, Q.M. Yan, M. Chen, W. Fan, Y.H. Sun, J. Suh, D.Y. Fu, S. Lee, J. Zhou, S. Tongay, J. Ji, J.B. Neaton, and J.Q. Wu: Elastic properties of chemical-vapor-deposited monolayer MoS2, WS2, and their bilayer heterostructures. Nano Lett. 14(9), 5097 (2014).
C. Filippi, D.J. Singh, and C.J. Umrigar: All-electron local-density and generalized-gradient calculations of the structural-properties of semiconductors. Phys. Rev. B. 50(20), 14947 (1994).
J. Kang, S. Tongay, J. Zhou, J.B. Li, and J.Q. Wu: Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett. 102(1), 4 (2013).
W.J. Yu, Z. Li, H.L. Zhou, Y. Chen, Y. Wang, Y. Huang, and X.F. Duan: Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nat. Mater. 12(3), 246 (2013).
W.J. Yu, Y. Liu, H.L. Zhou, A.X. Yin, Z. Li, Y. Huang, and X.F. Duan: Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotechnol. 8(12), 952 (2013).
L. Britnell, R.M. Ribeiro, A. Eckmann, R. Jalil, B.D. Belle, A. Mishchenko, Y.J. Kim, R.V. Gorbachev, T. Georgiou, S.V. Morozov, A.N. Grigorenko, A.K. Geim, C. Casiraghi, A.H. Castro Neto, and K.S. Novoselov: Strong light-matter interactions in heterostructures of atomically thin films. Science 340(6138), 1311 (2013).
B. Hunt, J.D. Sanchez-Yamagishi, A.F. Young, M. Yankowitz, B.J. LeRoy, K. Watanabe, T. Taniguchi, P. Moon, M. Koshino, P. Jarillo-Herrero, and R.C. Ashoori: Massive dirac fermions and hofstadter butterfly in a van der Waals heterostructure. Science 340(6139), 1427 (2013).
S. Tongay, W. Fan, J. Kang, J. Park, U. Koldemir, J. Suh, D.S. Narang, K. Liu, J. Ji, J.B. Li, R. Sinclair, and J.Q. Wu: Tuning interlayer coupling in large-area heterostructures with cvd-grown MoS2 and WS2 monolayers. Nano Lett. 14(6), 3185 (2014).
X.P. Hong, J. Kim, S.F. Shi, Y. Zhang, C.H. Jin, Y.H. Sun, S. Tongay, J.Q. Wu, Y.F. Zhang, and F. Wang: Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 9(9), 682 (2014).
Y.J. Gong, J.H. Lin, X.L. Wang, G. Shi, S.D. Lei, Z. Lin, X.L. Zou, G.L. Ye, R. Vajtai, B.I. Yakobson, H. Terrones, M. Terrones, B.K. Tay, J. Lou, S.T. Pantelides, Z. Liu, W. Zhou, and P.M. Ajayan: Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13(12), 1135 (2014).
C.M. Huang, S.F. Wu, A.M. Sanchez, J.J.P. Peters, R. Beanland, J.S. Ross, P. Rivera, W. Yao, D.H. Cobden, and X.D. Xu: Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors. Nat. Mater. 13(12), 1096 (2014).
K.H. Liu, L.M. Zhang, T. Cao, C.H. Jin, D.A. Qiu, Q. Zhou, A. Zettl, P.D. Yang, S.G. Louie, and F. Wang: Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nat. Commun. 5, 6 (2014).
P.H. Tan, W.P. Han, W.J. Zhao, Z.H. Wu, K. Chang, H. Wang, Y.F. Wang, N. Bonini, N. Marzari, N. Pugno, G. Savini, A. Lombardo, and A.C. Ferrari: The shear mode of multilayer graphene. Nat. Mater. 11(4), 294 (2012).
J.B. Wu, X. Zhang, M. Ijas, W.P. Han, X.F. Qiao, X.L. Li, D.S. Jiang, A.C. Ferrari, and P.H. Tan: Resonant raman spectroscopy of twisted multilayer graphene. Nat. Commun. 5, 8 (2014).
E. Koren, E. Lortscher, C. Rawlings, A.W. Knoll, and U. Duerig: Adhesion and friction in mesoscopic graphite contacts. Science 348(6235), 679 (2015).
H.G. Craighead: Nanoelectromechanical systems. Science 290(5496), 1532 (2000).
J.S. Bunch, A.M. van der Zande, S.S. Verbridge, I.W. Frank, D.M. Tanenbaum, J.M. Parpia, H.G. Craighead, and P.L. McEuen: Electromechanical resonators from graphene sheets. Science 315(5811), 490 (2007).
J.T. Robinson, M. Zalalutdinov, J.W. Baldwin, E.S. Snow, Z.Q. Wei, P. Sheehan, and B.H. Houston: Wafer-scale reduced graphene oxide films for nanomechanical devices. Nano Lett. 8(10), 3441 (2008).
C.Y. Chen, S. Rosenblatt, K.I. Bolotin, W. Kalb, P. Kim, I. Kymissis, H.L. Stormer, T.F. Heinz, and J. Hone: Performance of monolayer graphene nanomechanical resonators with electrical readout. Nat. Nanotechnol. 4(12), 861 (2009).
J.T. Robinson, M.K. Zalalutdinov, C.E. Junkermeier, J.C. Culbertson, T.L. Reinecke, R. Stine, P.E. Sheehan, B.H. Houston, and E.S. Snow: Structural transformations in chemically modified graphene. Solid State Commun. 152(21), 1990 (2012).
A. Eichler, J. Moser, J. Chaste, M. Zdrojek, I. Wilson-Rae, and A. Bachtold: Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene. Nat. Nanotechnol. 6(6), 339 (2011).
A. Castellanos-Gomez, R. van Leeuwen, M. Buscema, H.S.J. van der Zant, G.A. Steele, and W.J. Venstra: Single-layer MoS2 mechanical resonators. Adv. Mater. 25(46), 6719 (2013).
J. Lee, Z.H. Wang, K.L. He, J. Shan, and P.X.L. Feng: High frequency MoS2 nanomechanical resonators. ACS Nano 7(7), 6086 (2013).
L.K. Li, Y.J. Yu, G.J. Ye, Q.Q. Ge, X.D. Ou, H. Wu, D.L. Feng, X.H. Chen, and Y.B. Zhang: Black phosphorus field-effect transistors. Nat. Nanotechnol. 9(5), 372 (2014).