Mechanical properties of mortars modified with wood waste ash
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abdul Kadir, A., & Mohajerani, A. (2011). Bricks: an excellent building material for recycling wastes–a review.
Abdullahi M (2006) Characteristics of wood ash/OPC concrete. Leonardo Electron J Pract Technol 8:9–16
Aldebert P, Traverse J (1982) Neutron diffraction study of structural characteristics and ionic mobility of a-Al2O3 at high temperatures. J Am Ceram Soc 65(9):460–464
American Society for Testing and Materials. Committee C-1 on Cement (2013) Standard test method for compressive strength of hydraulic cement mortars (using 2-in. Or [50-mm] cube specimens). ASTM International.
Argiz Lucio CG (2014). Estudio de la utilización de las cenizas de cenicero de centrales termoeléctricas de carbón como adición del cemento portland: análisis comparativo con las cenizas volantes.
Cheah CB, Ramli M (2011) The implementation of wood waste ash as a partial cement replacement material in the production of structural grade concrete and mortar: an overview. Resour Conserv Recycl 55(7):669–685
Chowdhury S, Mishra M, Suganya O (2015) The incorporation of wood waste ash as a partial cement replacement material for making structural grade concrete: an overview. Ain Shams Eng J 6(2):429–437
Corinaldesi V, Mazzoli A, Siddique R (2016) Characterization of lightweight mortars containing wood processing by-products waste. Constr Build Mater 123:281–289
Elinwa AU, Ejeh SP (2004) Effects of the incorporation of sawdust waste incineration fly ash in cement pastes and mortars. J Asian Archit Build 3(1):1–7
dos Santos SF, Tonoli GHD, Mejia J, Fiorelli J, Savastano H Jr (2015) Non-conventional cement-based composites reinforced with vegetable fibers: a review of strategies to improve durability. Mater Constr 65(317):041
Dugat J, Roux N, Bernier G (1996) Mechanical properties of reactive powder concretes. Mater Struct 29(4):233–240
Elinwa AU, Ejeh SP, Akpabio IO (2005) Using metakaolin to improve sawdust-ash concrete. Concr Int 27(11):49–52
Elinwa AU, Ejeh SP, Mamuda AM (2008) Assessing of the fresh concrete properties of self-compacting concrete containing sawdust ash. Constr Build Mater 22(6):1178–1182
Elinwa AU, Mahmood YA (2002) Ash from timber waste as cement replacement material. Cement Concr Compos 24(2):219–222
Fuller A, Stegmaier M, Schulz N, Menke M, Schellhorn H, Knödler F et al (2018) Use of wood dust fly ash from an industrial pulverized fuel facility for rendering. Constr Build Mater 189:825–848
Garcia Calvo JL, Hidalgo A, Alonso Alonso MC, Luxán Gómez del Campillo M del P de, Fernández Luco L (2010) Caracterización de residuos procedentes de los procesos de combustión de biomasa. Viabilidad de uso como materiales de Construcción.
Gil H, Ortega A, Pérez J (2017) Mechanical behavior of mortar reinforced with sawdust waste. Proc Eng 200:325–332
Guzmán MFS, Ruiz DDP, Sarmiento CO, Grammes F (2013) Evaluación de las propiedades mecánicas de morteros modificados con ceniza proveniente de la desorción térmica de aguas de la industria petrolera. Cem Hormigón 956:10–14
Inga PR, Castillo MU (2016) Caracteristicas fisico-quimicas de la madera y carbon de once especies forestales de la Amazonia Peruana. Revista Forestal del Peru 14(2):1
Lafhaj Z, Goueygou M, Djerbi A, Kaczmarek M (2006) Correlation between porosity, permeability and ultrasonic parameters of mortar with variable water/cement ratio and water content. Cem Concr Res 36(4):625–633
Li J, Li L, Stott F (2004) Crystallographical analysis of surface layers of refractory ceramics formed using combined flame spray and simultaneous laser treatment. J Eur Ceram Soc 24(10–11):3129–3138
Maheswari CU, Reddy KO, Muzenda E, Guduri B, Rajulu AV (2012) Extraction and characterization of cellulose microfibrils from agricultural residue–Cocos nucifera L. Biomass Bioenerg 46:555–563
Menéndez E, Álvaro A, Argiz C, Parra J, Moragues A (2013) Characterization of bottom ashes from coal pulverized power plants to determine their potential use feasibility. Bol Soc Esp Ceram Vidiro 52:296–304
Moon J, Wang Z, Kim MO, Chun S-C (2016) Strength enhancement of alkaline activated fly ash cured at ambient temperature by delayed activation of substituted OPC. Constr Build Mater 122:659–666
Naik TR (1999) Tests of wood ash as a potential source for construction materials. Report NoCBU-1999–09. Milwaukee: UWM Center for By-products utilization, Department of Civil Engineering and Mechanics, University of Wisconsin-Milwaukee, 61.
Norby P (1997) Synchrotron powder diffraction using imaging plates: crystal structure determination and Rietveld refinement. J Appl Crystallogr 30(1):21–30
Pavlíková M, Zemanová L, Pokorný J, Záleská M, Jankovský O, Lojka M et al (2018) Valorization of wood chips ash as an eco-friendly mineral admixture in mortar mix design. Waste Manage 80:89–100
Ramos T, Matos AM, Sousa-Coutinho J (2013) Mortar with wood waste ash: Mechanical strength carbonation resistance and ASR expansion. Constr Build Mater 49:343–351
Siddique R (2007) Waste materials and by-products in concrete. Springer, Berlin
Thomas M, Shehata M, Shashiprakash S (1999) The use of fly ash in concrete: classification by composition. Cem Concr Aggregates 21(2):105–110
Udoeyo FF, Inyang H, Young DT, Oparadu EE (2006) Potential of wood waste ash as an additive in concrete. J Mater Civ Eng 18(4):605–611
Wei YM, Tomita B, Hiramatsu Y, Miyatake A, Fujii T, Fujii T, Yoshinaga S (2003) Hydration behavior and compressive strength of cement mixed with exploded wood fiber strand obtained by the water-vapor explosion process. Journal of wood science 49(4):317–326
Zhang Z, Olek J, Diamond S (2002) Studies on delayed ettringite formation in early-age, heat-cured mortars: I. Expansion measurements, changes in dynamic modulus of elasticity, and weight gains. Cem Concr Res 32(11):1729–1736