Mechanical properties of lime-based mortars reinforced with plasma treated glass fibers

Construction and Building Materials - Tập 190 - Trang 929-938 - 2018
J. Trejbal1,2
1Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29 Praha 6, Czech Republic
2Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnická 10, 162 00 Praha 6, Czech Republic

Tài liệu tham khảo

Bochen, 2013, Study on physical and chemical properties of external lime-sand plasters of some historical buildings, Constr. Build. Mater., 45, 11, 10.1016/j.conbuildmat.2013.03.086 Lanas, 2003, Masonry repair lime-based mortars: factors affecting the mechanical behavior, Cem. Concr. Res., 33, 1867, 10.1016/S0008-8846(03)00210-2 Lanas, 2004, Mechanical properties of natural hydraulic lime-based mortars, Cem. Concr. Res., 34, 2191, 10.1016/j.cemconres.2004.02.005 Vejmelková, 2012, Mechanical, fracture-mechanical, hydric, thermal, and durability properties of lime-metakaolin plasters for renovation of historical buildings, Constr. Build. Mater., 31, 22, 10.1016/j.conbuildmat.2011.12.084 Van Balen, 2005, Introduction to requirements for and functions and properties of repair mortars, Mater. Struct., 38, 781, 10.1007/BF02479291 Nežerka, 2016, An integrated experimental-numerical study of the performance of lime-based mortars in masonry piers under eccentric loading, Constr. Build. Mater., 114, 913, 10.1016/j.conbuildmat.2016.04.013 Stefanidou, 2005, The role of aggregates on the structure and properties of lime mortars, Cem. Concr. Compos., 27, 914, 10.1016/j.cemconcomp.2005.05.001 Gameiro, 2014, Physical and chemical assessment of lime-metakaolin mortars: Influence of binder:aggregate ratio, Cem. Concr. Compos., 45, 264, 10.1016/j.cemconcomp.2013.06.010 Nežerka, 2014, Comprehensive study on mechanical properties of lime-based pastes with additions of metakaolin and brick dust, Cem. Concr. Res., 64, 17, 10.1016/j.cemconres.2014.06.006 Nežerka, 2015, Investigation of crushed brick-matrix interface in lime-based ancient mortar by microscopy and nanoindentation, Cem. Concr. Compos., 55, 122, 10.1016/j.cemconcomp.2014.07.023 di Prisco, 2009, Fibre reinforced concrete: new design perspectives, Mater. Struct., 42, 1261, 10.1617/s11527-009-9529-4 Tatnall, 2006, Fiber-reinforced concrete Iucolano, 2013, Fibre-reinforced lime-based mortars: a possible resource for ancient masonry restoration, Constr. Build. Mater., 38, 785, 10.1016/j.conbuildmat.2012.09.050 Izaguirre, 2011, Effect of a polypropylene fibre on the behaviour of aerial lime-based mortars, Constr. Build. Mater., 25, 992, 10.1016/j.conbuildmat.2010.06.080 Chan, 2010, Toughness of fibre reinforced hydraulic lime mortar. part-1: Quasi-static response, Mater. Struct., 43, 1435, 10.1617/s11527-010-9598-4 Kennedy, 2013, Studies of hair for use in lime plaster: Implications for conservation and new work, Polymer Degradation Stab., 98, 894, 10.1016/j.polymdegradstab.2013.01.004 Di Bella, 2014, Effects of natural fibres reinforcement in lime plasters (kenaf and sisal vs. polypropylene), Constr. Build. Mater., 58, 159, 10.1016/j.conbuildmat.2014.02.026 Wei, 2010, Environmental resistance and mechanical performance of basalt and glass fibers, Mater. Sci. Eng., A, 527, 4708, 10.1016/j.msea.2010.04.021 Sim, 2005, Characteristics of basalt fiber as a strengthening material for concrete structures, Compos. B, 36, 504, 10.1016/j.compositesb.2005.02.002 Gregor-Svetec, 2005, High modulus polypropylene fibers. I. Mechanical properties, J. Appl. Polym. Sci., 98, 1, 10.1002/app.21990 Peis, 1995, Mechanical properties of poly(vinil alcohol) fibres and composites, Composites, 26, 83, 10.1016/0010-4361(95)90407-Q Naaman, 2003, Engineered steel fibers with optimal properties for reinforcement of cement composites, J. Adv. Concr. Technol., 3, 241, 10.3151/jact.1.241 Santarelli, 2014, Basalt fiber reinforced natural hydraulic lime mortars: a potential bio-based material for restoration, Mater. Des., 63, 398, 10.1016/j.matdes.2014.06.041 Asprone, 2014, Analysis of the strain-rate behavior of a basalt fiber reinforced natural hydraulic mortar, Cem. Concr. Compos., 53, 52, 10.1016/j.cemconcomp.2014.06.009 Tassew, 2014, Mechanical properties of glass fiber reinforced ceramic concrete, Constr. Build. Mater., 51, 215, 10.1016/j.conbuildmat.2013.10.046 Kizilkanat, 2015, Mechanical properties and fracture behavior of basalt and glass fiber reinforced concrete: an experimental study, Constr. Build. Mater., 100, 218, 10.1016/j.conbuildmat.2015.10.006 Fenu, 2016, Dynamic behaviour of cement mortars reinforced with glass and basaltfibres, Compos. Part B, 92, 142, 10.1016/j.compositesb.2016.02.035 Miracle, 2001 Scheffler, 2017, Alkali resistant glass fiber reinforced concrete: Pull-out investigation of interphase behavior under quasi-static and high rate loading, Cem. Concr. Compos., 84, 19, 10.1016/j.cemconcomp.2017.08.009 Čech, 2002, Plasma surface treatment and modification of glass fibers, Compos. A, 33A, 1367, 10.1016/S1359-835X(02)00149-5 Čech, 2014, Enhanced interfacial adhesion of glass fibers by tetravinylsilane plasma modification, Compos. A, 58A, 84, 10.1016/j.compositesa.2013.12.003 Cökelier, 2007, Modification of glass fibers to improve reinforcement: a plasma polymerization technique, Dent. Mater., 23, 335, 10.1016/j.dental.2006.01.023 S. Tiwari, J. Bijwe, Surface treatment of carbob fiber – a review, in: 2nd International Conference on Innovations in Automation and Mechatronics Engineering, ICIAME 2014, Elsevier Procedia, 2014. Kim, 2011, Study on an oxygen plasma treatment of a basalt fiber and its effect on the interlaminar fracture property of basalt/epoxy woven composites, Compos. B, 42B, 499, 10.1016/j.compositesb.2010.12.001 Wei, 2010, Tensile behavior contrast of basalt and glass fibers after chemical treatment, Mater. Des., 31, 4244, 10.1016/j.matdes.2010.04.009 Elsaka, 2013, Influence of chemical surface treatments on adhesion of fiber posts to composite resin core materials, Dental Mater., 29, 550, 10.1016/j.dental.2013.03.004 Han, 2014, Evaluation of fiber surface treatment on the interfacial behavior of carbon fiber-reinforced polypropylene composites, Compos. B, 60B, 98, 10.1016/j.compositesb.2013.12.069 Přinosil, 2015 J. Trejbal, V. Šmilauer, L. Kopecký, A. Artemenko, V. Potocký, Interface enhancement between polymeric macro fibers nad cement matrix by plasma treatment, in: Proceedings of the 8-th International Conference on Nanomaterials – Research and Application, Brno, 2016, pp. 368–373. Nežerka, 2018, Contact angle measurements tool based on image analysis, Exp. Tech., 42, 271, 10.1007/s40799-017-0231-0 CSN EN 1936:2006 Natural stone test methods. Determination of real density and apparent density, and of total and open porosity, European Standard, 2006. CSN EN 1015-11:1999 Methods of test for mortar for masonry. Determination of flexural and compressive strength of hardened mortar, European Standard, 1999. Trejbal, 2016, Impact of surface plasma treatment on the performance of pet fiber reinforcement in cementitious composites, Cem. Concr. Res., 89, 276, 10.1016/j.cemconres.2016.08.018 Nežerka, 2017, Micromechanics-based simulations of compressive and tensile testing on lime-based mortars, Mech. Mater., 105, 49, 10.1016/j.mechmat.2016.11.011