Mechanical properties of lime-based mortars reinforced with plasma treated glass fibers
Tài liệu tham khảo
Bochen, 2013, Study on physical and chemical properties of external lime-sand plasters of some historical buildings, Constr. Build. Mater., 45, 11, 10.1016/j.conbuildmat.2013.03.086
Lanas, 2003, Masonry repair lime-based mortars: factors affecting the mechanical behavior, Cem. Concr. Res., 33, 1867, 10.1016/S0008-8846(03)00210-2
Lanas, 2004, Mechanical properties of natural hydraulic lime-based mortars, Cem. Concr. Res., 34, 2191, 10.1016/j.cemconres.2004.02.005
Vejmelková, 2012, Mechanical, fracture-mechanical, hydric, thermal, and durability properties of lime-metakaolin plasters for renovation of historical buildings, Constr. Build. Mater., 31, 22, 10.1016/j.conbuildmat.2011.12.084
Van Balen, 2005, Introduction to requirements for and functions and properties of repair mortars, Mater. Struct., 38, 781, 10.1007/BF02479291
Nežerka, 2016, An integrated experimental-numerical study of the performance of lime-based mortars in masonry piers under eccentric loading, Constr. Build. Mater., 114, 913, 10.1016/j.conbuildmat.2016.04.013
Stefanidou, 2005, The role of aggregates on the structure and properties of lime mortars, Cem. Concr. Compos., 27, 914, 10.1016/j.cemconcomp.2005.05.001
Gameiro, 2014, Physical and chemical assessment of lime-metakaolin mortars: Influence of binder:aggregate ratio, Cem. Concr. Compos., 45, 264, 10.1016/j.cemconcomp.2013.06.010
Nežerka, 2014, Comprehensive study on mechanical properties of lime-based pastes with additions of metakaolin and brick dust, Cem. Concr. Res., 64, 17, 10.1016/j.cemconres.2014.06.006
Nežerka, 2015, Investigation of crushed brick-matrix interface in lime-based ancient mortar by microscopy and nanoindentation, Cem. Concr. Compos., 55, 122, 10.1016/j.cemconcomp.2014.07.023
di Prisco, 2009, Fibre reinforced concrete: new design perspectives, Mater. Struct., 42, 1261, 10.1617/s11527-009-9529-4
Tatnall, 2006, Fiber-reinforced concrete
Iucolano, 2013, Fibre-reinforced lime-based mortars: a possible resource for ancient masonry restoration, Constr. Build. Mater., 38, 785, 10.1016/j.conbuildmat.2012.09.050
Izaguirre, 2011, Effect of a polypropylene fibre on the behaviour of aerial lime-based mortars, Constr. Build. Mater., 25, 992, 10.1016/j.conbuildmat.2010.06.080
Chan, 2010, Toughness of fibre reinforced hydraulic lime mortar. part-1: Quasi-static response, Mater. Struct., 43, 1435, 10.1617/s11527-010-9598-4
Kennedy, 2013, Studies of hair for use in lime plaster: Implications for conservation and new work, Polymer Degradation Stab., 98, 894, 10.1016/j.polymdegradstab.2013.01.004
Di Bella, 2014, Effects of natural fibres reinforcement in lime plasters (kenaf and sisal vs. polypropylene), Constr. Build. Mater., 58, 159, 10.1016/j.conbuildmat.2014.02.026
Wei, 2010, Environmental resistance and mechanical performance of basalt and glass fibers, Mater. Sci. Eng., A, 527, 4708, 10.1016/j.msea.2010.04.021
Sim, 2005, Characteristics of basalt fiber as a strengthening material for concrete structures, Compos. B, 36, 504, 10.1016/j.compositesb.2005.02.002
Gregor-Svetec, 2005, High modulus polypropylene fibers. I. Mechanical properties, J. Appl. Polym. Sci., 98, 1, 10.1002/app.21990
Peis, 1995, Mechanical properties of poly(vinil alcohol) fibres and composites, Composites, 26, 83, 10.1016/0010-4361(95)90407-Q
Naaman, 2003, Engineered steel fibers with optimal properties for reinforcement of cement composites, J. Adv. Concr. Technol., 3, 241, 10.3151/jact.1.241
Santarelli, 2014, Basalt fiber reinforced natural hydraulic lime mortars: a potential bio-based material for restoration, Mater. Des., 63, 398, 10.1016/j.matdes.2014.06.041
Asprone, 2014, Analysis of the strain-rate behavior of a basalt fiber reinforced natural hydraulic mortar, Cem. Concr. Compos., 53, 52, 10.1016/j.cemconcomp.2014.06.009
Tassew, 2014, Mechanical properties of glass fiber reinforced ceramic concrete, Constr. Build. Mater., 51, 215, 10.1016/j.conbuildmat.2013.10.046
Kizilkanat, 2015, Mechanical properties and fracture behavior of basalt and glass fiber reinforced concrete: an experimental study, Constr. Build. Mater., 100, 218, 10.1016/j.conbuildmat.2015.10.006
Fenu, 2016, Dynamic behaviour of cement mortars reinforced with glass and basaltfibres, Compos. Part B, 92, 142, 10.1016/j.compositesb.2016.02.035
Miracle, 2001
Scheffler, 2017, Alkali resistant glass fiber reinforced concrete: Pull-out investigation of interphase behavior under quasi-static and high rate loading, Cem. Concr. Compos., 84, 19, 10.1016/j.cemconcomp.2017.08.009
Čech, 2002, Plasma surface treatment and modification of glass fibers, Compos. A, 33A, 1367, 10.1016/S1359-835X(02)00149-5
Čech, 2014, Enhanced interfacial adhesion of glass fibers by tetravinylsilane plasma modification, Compos. A, 58A, 84, 10.1016/j.compositesa.2013.12.003
Cökelier, 2007, Modification of glass fibers to improve reinforcement: a plasma polymerization technique, Dent. Mater., 23, 335, 10.1016/j.dental.2006.01.023
S. Tiwari, J. Bijwe, Surface treatment of carbob fiber – a review, in: 2nd International Conference on Innovations in Automation and Mechatronics Engineering, ICIAME 2014, Elsevier Procedia, 2014.
Kim, 2011, Study on an oxygen plasma treatment of a basalt fiber and its effect on the interlaminar fracture property of basalt/epoxy woven composites, Compos. B, 42B, 499, 10.1016/j.compositesb.2010.12.001
Wei, 2010, Tensile behavior contrast of basalt and glass fibers after chemical treatment, Mater. Des., 31, 4244, 10.1016/j.matdes.2010.04.009
Elsaka, 2013, Influence of chemical surface treatments on adhesion of fiber posts to composite resin core materials, Dental Mater., 29, 550, 10.1016/j.dental.2013.03.004
Han, 2014, Evaluation of fiber surface treatment on the interfacial behavior of carbon fiber-reinforced polypropylene composites, Compos. B, 60B, 98, 10.1016/j.compositesb.2013.12.069
Přinosil, 2015
J. Trejbal, V. Šmilauer, L. Kopecký, A. Artemenko, V. Potocký, Interface enhancement between polymeric macro fibers nad cement matrix by plasma treatment, in: Proceedings of the 8-th International Conference on Nanomaterials – Research and Application, Brno, 2016, pp. 368–373.
Nežerka, 2018, Contact angle measurements tool based on image analysis, Exp. Tech., 42, 271, 10.1007/s40799-017-0231-0
CSN EN 1936:2006 Natural stone test methods. Determination of real density and apparent density, and of total and open porosity, European Standard, 2006.
CSN EN 1015-11:1999 Methods of test for mortar for masonry. Determination of flexural and compressive strength of hardened mortar, European Standard, 1999.
Trejbal, 2016, Impact of surface plasma treatment on the performance of pet fiber reinforcement in cementitious composites, Cem. Concr. Res., 89, 276, 10.1016/j.cemconres.2016.08.018
Nežerka, 2017, Micromechanics-based simulations of compressive and tensile testing on lime-based mortars, Mech. Mater., 105, 49, 10.1016/j.mechmat.2016.11.011