Mechanical properties, corrosion, and biocompatibility of Mg‐Zr‐Sr‐Dy alloys for biodegradable implant applications

Yunfei Ding1,2, Jixing Lin3, Cuié Wen1, Dongmei Zhang4, Yuncang Li1
1School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
2School of Mechanical Engineering, Huaihai Institute of Technology, Lianyungang, Jiangsu 222005, China
3Advanced Material Research and Development Center, Zhejiang Industry & Trade Vocational College Wenzhou Zhejiang 325003 China
4Department of Food Safety, Market Supervision Administration of Shuyang, Jiangsu, 223600 China

Tóm tắt

Abstract

This study investigates the microstructure, mechanical properties, corrosion behavior, and biocompatibility of magnesium (Mg)‐based Mg1Zr2SrxDy (x = 0, 1, 1.63, 2.08 wt %) alloys for biodegradable implant applications. The corrosion behavior of the Mg‐based alloys has been evaluated in simulated body fluid using an electrochemical technique and hydrogen evolution. The biocompatibility of the Mg‐based alloys has been assessed using SaSO2 cells. Results indicate that the addition of Dy to Mg‐Zr‐Sr alloy showed a positive impact on the corrosion behavior and significantly decreased the degradation rates of the alloys. The degradation rate of Mg1Zr2Sr1.0Dy decreased from 17.61 to 12.50 mm year−1 of Mg1Zr2Sr2.08Dy based on the hydrogen evolution. The ultimate compressive strength decreased from 270.90 MPa for Mg1Zr2Sr1Dy to 236.71 MPa for Mg1Zr2Sr2.08Dy. An increase in the addition of Dy to the Mg‐based alloys resulted in an increase in the volume fraction of the Mg2Dy phase, which mitigated the galvanic effect between the Mg17Sr2 phase and the Mg matrix, and led to an increase in the corrosion resistance of the base alloy. The biocompatibility of the Mg‐based alloys was enhanced with decreasing corrosion rates. Mg1Zr2Sr2.08Dy exhibited the lowest corrosion rate and the highest biocompatibility compared with the other Mg‐based alloys. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2425–2434, 2018.

Từ khóa


Tài liệu tham khảo

10.1016/j.actbio.2015.08.042

10.1016/j.actbio.2013.06.025

10.1002/adhm.201500189

10.1155/2011/836587

10.1016/S0009-8981(99)00258-2

10.1016/S0899-9007(01)00551-2

10.1007/s10853-012-6920-2

10.1007/s10853-015-9056-3

10.1179/175355511X13240279339482

10.1016/j.biomaterials.2015.06.031

10.1038/nature16445

10.1016/j.electacta.2006.09.069

10.1016/S1002-0721(12)60198-7

10.1002/jbm.a.35247

10.1111/ffe.12262

10.1186/1475-925X-12-62

10.1006/faat.1997.2322

10.1016/j.actbio.2009.09.024

10.1016/j.actbio.2012.10.001

10.1016/j.jmbbm.2012.04.007

10.1016/j.msea.2014.09.103

10.1016/j.jallcom.2008.02.005

10.1016/j.jmbbm.2011.07.018

10.1016/j.actbio.2012.02.018

10.1016/j.actbio.2012.04.028

10.1002/jbm.a.10426

10.1016/j.biomaterials.2008.10.021

10.1016/j.mseb.2011.02.025

10.1039/C5TB00433K

10.1016/S0010-938X(98)00078-X

10.1016/S1534-5807(04)00075-9

10.1016/j.msea.2014.05.067

10.1201/9781482265163-76

10.1016/j.cossms.2014.09.005

10.1007/BF02667495

10.1002/adem.201500222

10.1533/9780857091413.1.3

10.1016/j.pmatsci.2017.04.011

10.1002/(SICI)1527-2648(199909)1:1<11::AID-ADEM11>3.0.CO;2-N

2003 Corrosion: Fundamental Testing and Protection ASTM International PA BA. Shaw LJ Korb DL Olson Corrosion resistance of magnesium alloys 692 695

10.1016/j.biomaterials.2016.01.046

10.1002/jat.2550130314

10.1016/S0109-5641(00)00010-5

10.1002/maco.200603988

10.1016/j.actbio.2012.07.045