Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds

Ф.С. Сенатов1, K.V. Niaza1, A. V. Mikhailovskaya1, Aleksey V. Maksimkin1, S.D. Kaloshkin1, Y. Estrin1
1National University of Science and Technology "MISIS", 119049, Leninskiy pr. 4, Moscow, Russian Federation

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bencherif, 2012, Injectable preformed scaffolds with shape-memory properties, Proc. Natl. Acad. Sci. USA, 109, 19590, 10.1073/pnas.1211516109

Behl, 2010, Multifunctional shape-memory polymers, Adv. Mater., 22, 3388, 10.1002/adma.200904447

Berg, 2014, New directions in the chemistry of shape memory polymers, Polymer, 55, 5849, 10.1016/j.polymer.2014.07.052

Crump, 1991, Fused deposition modeling (FDM): putting rapid back into proto- typing, Second. Int. Conf. Rapid Prototyp., 354

Celli, 1992, Polymer, 33, 2699, 10.1016/0032-3861(92)90440-8

Cai, 1996, J. Polym. Sci. B Polym. Phys., 34, 2701, 10.1002/(SICI)1099-0488(19961130)34:16<2701::AID-POLB2>3.0.CO;2-S

Duncheon, 2005, Robots will be of service with muscles, not motors, Ind. Robot.: Int. J., 32, 452, 10.1108/01439910510629145

Du, 2014, Fabrication and characterization of fully biodegradable natural fiber-reinforced poly(lactic acid) composites, Compos. B, 56, 717, 10.1016/j.compositesb.2013.09.012

Flory, 1953

Fiore, 2014, Compos. Sci. Technol., 105, 110, 10.1016/j.compscitech.2014.10.005

Gupta, 2007, Prog. Polym. Sci., 32, 455, 10.1016/j.progpolymsci.2007.01.005

Guarino, 2008, The synergic effect of polylactide fiber and calcium phosphate particle reinforcement in poly e-caprolactone-based composite scaffolds, Acta Biomater., 4, 1778, 10.1016/j.actbio.2008.05.013

Gall, 2004, Internal stress storage in shape memory polymer nanocomposites, Appl. Phys. Lett., 85, 290, 10.1063/1.1769087

He, 2006, Morphology and melt crystallization of poly(llactide) obtained by ring opening polymerization of l-lactide with zinc catalyst, Polym. Eng. Sci., 46, 1583, 10.1002/pen.20617

Hu, 2012, Recent advances in shape–memory polymers: Structure, mechanism, functionality, modeling and applications, Prog. Polym. Sci., 37, 1720, 10.1016/j.progpolymsci.2012.06.001

Kolesov, 2015, eXPRESS, Polym. Lett., 9, 255, 10.3144/expresspolymlett.2015.24

Kutikov, 2014, Shape-Memory Performance of Thermoplastic Amphiphilic Triblock Copolymer Poly(d,l-lactic acid-co-ethylene glycol-co-d,l-lactic acid) (PELA)/hydroxyapatite composites, Macromol. Chem. Phys., 215, 2482, 10.1002/macp.201400340

Krishnamachari, 2009, Biodegradable poly(lactic acid)/clay nanocomposites by melt intercalation: a study of morphological, thermal, and mechanical properties, Int. J. Polym. Anal. Charact., 14, 336, 10.1080/10236660902871843

Knight, 2008, Biodegradable thermoplastic polyurethanes incorporating polyhedral oligosilsesquioxane, Biomacromolecules, 9, 2458, 10.1021/bm8004935

Liu, 2007, Review of progress in shape-memory polymers, J. Mater. Chem., 17, 1543, 10.1039/b615954k

Lendlein, 2002, Shape-memory polymers, Angew. Chem. Int. Ed., 41, 2034, 10.1002/1521-3773(20020617)41:12<2034::AID-ANIE2034>3.0.CO;2-M

Lendlein, 2002, Shape-memory polymers, 1

Liu, 2004, Mech. Mater., 36, 929, 10.1016/j.mechmat.2003.08.012

Lendlein, 2002, Biodegradable, elastic shape-memory polymers for potential biomedical applications, Science, 296, 1673, 10.1126/science.1066102

Li, 2014, 1919

Lai, 2013, Shape memory properties of melt-blended polylactic acid (PLA)/thermoplastic polyurethane (TPU) bio-based blends, J. Polym. Res., 20, 140, 10.1007/s10965-013-0140-6

Liu, 1995, Miscibility and crystallization of semicrystalline nylon 6 and amorphous nylon 6IcoT blends, Polymer, 36, 4797, 10.1016/0032-3861(95)99295-6

Li, 2010, Thermomechanical characterization of a shape memory polymer based self-repairing syntactic foam, Polymer, 51, 755, 10.1016/j.polymer.2009.12.002

Maksimkin, 2014, Comparison of shape memory effect in UHMWPE for bulk and fiber state, J. Alloy. Compd., 586, s214, 10.1016/j.jallcom.2012.12.014

Meng, 2009, A review of shape memory polymer composites and blends, Composites, Part A, 1661, 10.1016/j.compositesa.2009.08.011

Ma, 2004, Scaffold for tissue engineering, Mater. Today, 7, 30, 10.1016/S1369-7021(04)00233-0

Malinauskas, 2014, 3D microporous scaffolds manufactured via combination of fused filament fabrication and direct laser writing ablation, Micromachines, 5, 839, 10.3390/mi5040839

Monnier, 2015, Molecular dynamics in electrospun amorphous plasticized polylactide fibers, Polymer, 73, 68, 10.1016/j.polymer.2015.07.047

Neuss, 2009, The use of a shape-memory poly(ε-caprolactone)dimethacrylate network as a tissue engineering scaffold, Biomaterials, 30, 1697, 10.1016/j.biomaterials.2008.12.027

Nam, 2000, A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive, J. Biomed. Mater. Res., 53, 1, 10.1002/(SICI)1097-4636(2000)53:1<1::AID-JBM1>3.0.CO;2-R

Nam, 2003, Crystallization behavior and morphology of biodegradable polylactide/layered silicate nanocomposite, Macromolecules, 36, 7126, 10.1021/ma034623j

Nie, 2015, Macroporous biphasic calcium phosphate scaffolds reinforced by poly-L-lactic acid/hydroxyapatite nanocomposite coatings forbone regeneration, Biochem. Eng. J., 98, 29, 10.1016/j.bej.2015.02.026

Ogden, 2014, Dimensional accuracy of 3D printed vertebra, SPIE Med. Imaging Int. Soc. Opt. Photon, 9036, 29

Pierce, 2011, Demonstrating the influence of water on shape-memory polymer networks based on poly[(rac-lactide)-co-glycolide] segments in vitro, Int. J. Artif. Organs, 34, 172, 10.5301/IJAO.2011.6413

Persson, 2014, Effect of bioactive extruded PLA/HA composite films on focal adhesion formation of preosteoblastic cells, Coll. Surf. B: Biointerfaces, 121, 409, 10.1016/j.colsurfb.2014.06.029

Pluta, 2006, Plasticized polylactide/clay nanocomposites. I. The role of filler content and its surface organo-modification on the physico-chemical properties, J. Polym. Sci. Part B Polym. Phys., 44, 299, 10.1002/polb.20694

Ray, 2003, New polylactide/layered silicate nanocomposites. 5. Designing of materials with desired properties, Polymer, 44, 6633, 10.1016/j.polymer.2003.08.021

Sadat-Shojai, 2013, Nano-hydroxyapatite reinforced polyhydroxybutyrate composites: a comprehensive study on the structural and in vitro biological properties, Mater. Sci. Eng.: C., 33, 2776, 10.1016/j.msec.2013.02.041

Shaffer, 2014, On reducing anisotropy in 3D printed polymers via ionizing radiation, Polymer, 55, 5969, 10.1016/j.polymer.2014.07.054

Song, 2015, Design and characterization of biocompatible shape memory polymer (SMP) blend foams with a dynamic porous structure, Polymer, 56, 82, 10.1016/j.polymer.2014.09.062

Sim, 2010, Dynamic mechanical and thermal properties of red algae fiber reinforced poly(lactic acid) biocomposites, Macromol. Res., 18, 489, 10.1007/s13233-010-0503-3

Suksut, 2011, Effect of nucleating agents on physical properties of poly(lactic acid) and its blend with natural rubber, J. Polym. Environ., 19, 288, 10.1007/s10924-010-0278-9

Senatov, 2014, Fractographic analysis of composites based on ultra high molecular weight polyethylene, Composites, Part B, 869, 10.1016/j.compositesb.2013.08.083

Senatov, 2014, Microstructure and properties of composite materials based on UHMWPE after mechanical activation, J. Alloy. Compd., 615, s573, 10.1016/j.jallcom.2013.12.175

Scatto, 2013, Plasticized and nanofilled poly(lactic acid)-based cast films: effect of plasticizer and organoclay on processability and final properties, J. Appl. Polym. Sci., 127, 4947, 10.1002/app.38042

Turner, 2014, Rapid Prototyp. J., 20, 10.1108/RPJ-01-2013-0012

Tirkkonen, 2013, Osteogenic medium is superior to growth factors in differentiation of human adipose stem cells towards bone-forming cells in 3D culture, Eur. Cells Mater., 25, 144, 10.22203/eCM.v025a10

Tarafder, 2013, Microwave sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering, J. Tissue Eng. Regen. Med., 7, 631, 10.1002/term.555

Tabi, 2010, Crystalline structure of annealed polylactic acid and its relation to processing, eXPRESS Polym. Lett., 4, 659, 10.3144/expresspolymlett.2010.80

Tsuji, 2000, Polym. Degrad. Stab., 67, 179, 10.1016/S0141-3910(99)00111-1

Wei, 1998, J. Mater. Sci., 33, 3743, 10.1023/A:1004692329247

Wischke, 2009, Evaluation of a degradable shape- memory polymer network as matrix for controlled drug release, J. Control Release, 138, 243, 10.1016/j.jconrel.2009.05.027

Xu, J., Song J., 2015. Polylactic acid (PLA)-based shape-memory materials for biomedical applications. In: Proceedings of the Woodhead Publishing Series in Biomaterials, edited by L’Hocine Yahia, Woodhead Publishing, Shape Memory Polymers for Biomedical Applications. pp.197–217. http://dx.doi.org/10.1016/B978-0-85709-698-2.00010-6.

Xiao, 2008, Crystallization behavior of fully biodegradable poly (lactic acid)/poly (butylene adipate-co-terephthalate) blends, J. Appl. Polym. Sci., 112, 3754, 10.1002/app.29800

Yuzay, 2010, Effects of synthetic and natural zeolites on morphology and thermal degradation of poly(lactic acid) composites, Polym. Degrad. Stab., 95, 1769, 10.1016/j.polymdegradstab.2010.05.011

Yan, 2013, Polylactide-based thermoplastic shape memory polymer nanocomposites, Eur. Polym. J., 49, 366, 10.1016/j.eurpolymj.2012.09.026

Zheng, 2006, Shape memory properties of poly(D,L-lactide)/hydroxyapatite composites, Biomaterials, 27, 4288, 10.1016/j.biomaterials.2006.03.043

Zalepugin, 2007, Formation of porosity in bioresorbable polymers by their treatment in gaseous, liquid and supercritical carbon dioxide, Supercrit. Fluids: Theor. Pract., 1, 61