Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bencherif, 2012, Injectable preformed scaffolds with shape-memory properties, Proc. Natl. Acad. Sci. USA, 109, 19590, 10.1073/pnas.1211516109
Berg, 2014, New directions in the chemistry of shape memory polymers, Polymer, 55, 5849, 10.1016/j.polymer.2014.07.052
Crump, 1991, Fused deposition modeling (FDM): putting rapid back into proto- typing, Second. Int. Conf. Rapid Prototyp., 354
Cai, 1996, J. Polym. Sci. B Polym. Phys., 34, 2701, 10.1002/(SICI)1099-0488(19961130)34:16<2701::AID-POLB2>3.0.CO;2-S
Duncheon, 2005, Robots will be of service with muscles, not motors, Ind. Robot.: Int. J., 32, 452, 10.1108/01439910510629145
Du, 2014, Fabrication and characterization of fully biodegradable natural fiber-reinforced poly(lactic acid) composites, Compos. B, 56, 717, 10.1016/j.compositesb.2013.09.012
Flory, 1953
Guarino, 2008, The synergic effect of polylactide fiber and calcium phosphate particle reinforcement in poly e-caprolactone-based composite scaffolds, Acta Biomater., 4, 1778, 10.1016/j.actbio.2008.05.013
Gall, 2004, Internal stress storage in shape memory polymer nanocomposites, Appl. Phys. Lett., 85, 290, 10.1063/1.1769087
He, 2006, Morphology and melt crystallization of poly(llactide) obtained by ring opening polymerization of l-lactide with zinc catalyst, Polym. Eng. Sci., 46, 1583, 10.1002/pen.20617
Hu, 2012, Recent advances in shape–memory polymers: Structure, mechanism, functionality, modeling and applications, Prog. Polym. Sci., 37, 1720, 10.1016/j.progpolymsci.2012.06.001
Kutikov, 2014, Shape-Memory Performance of Thermoplastic Amphiphilic Triblock Copolymer Poly(d,l-lactic acid-co-ethylene glycol-co-d,l-lactic acid) (PELA)/hydroxyapatite composites, Macromol. Chem. Phys., 215, 2482, 10.1002/macp.201400340
Krishnamachari, 2009, Biodegradable poly(lactic acid)/clay nanocomposites by melt intercalation: a study of morphological, thermal, and mechanical properties, Int. J. Polym. Anal. Charact., 14, 336, 10.1080/10236660902871843
Knight, 2008, Biodegradable thermoplastic polyurethanes incorporating polyhedral oligosilsesquioxane, Biomacromolecules, 9, 2458, 10.1021/bm8004935
Lendlein, 2002, Shape-memory polymers, Angew. Chem. Int. Ed., 41, 2034, 10.1002/1521-3773(20020617)41:12<2034::AID-ANIE2034>3.0.CO;2-M
Lendlein, 2002, Shape-memory polymers, 1
Lendlein, 2002, Biodegradable, elastic shape-memory polymers for potential biomedical applications, Science, 296, 1673, 10.1126/science.1066102
Li, 2014, 1919
Lai, 2013, Shape memory properties of melt-blended polylactic acid (PLA)/thermoplastic polyurethane (TPU) bio-based blends, J. Polym. Res., 20, 140, 10.1007/s10965-013-0140-6
Liu, 1995, Miscibility and crystallization of semicrystalline nylon 6 and amorphous nylon 6IcoT blends, Polymer, 36, 4797, 10.1016/0032-3861(95)99295-6
Li, 2010, Thermomechanical characterization of a shape memory polymer based self-repairing syntactic foam, Polymer, 51, 755, 10.1016/j.polymer.2009.12.002
Maksimkin, 2014, Comparison of shape memory effect in UHMWPE for bulk and fiber state, J. Alloy. Compd., 586, s214, 10.1016/j.jallcom.2012.12.014
Meng, 2009, A review of shape memory polymer composites and blends, Composites, Part A, 1661, 10.1016/j.compositesa.2009.08.011
Malinauskas, 2014, 3D microporous scaffolds manufactured via combination of fused filament fabrication and direct laser writing ablation, Micromachines, 5, 839, 10.3390/mi5040839
Monnier, 2015, Molecular dynamics in electrospun amorphous plasticized polylactide fibers, Polymer, 73, 68, 10.1016/j.polymer.2015.07.047
Neuss, 2009, The use of a shape-memory poly(ε-caprolactone)dimethacrylate network as a tissue engineering scaffold, Biomaterials, 30, 1697, 10.1016/j.biomaterials.2008.12.027
Nam, 2000, A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive, J. Biomed. Mater. Res., 53, 1, 10.1002/(SICI)1097-4636(2000)53:1<1::AID-JBM1>3.0.CO;2-R
Nam, 2003, Crystallization behavior and morphology of biodegradable polylactide/layered silicate nanocomposite, Macromolecules, 36, 7126, 10.1021/ma034623j
Nie, 2015, Macroporous biphasic calcium phosphate scaffolds reinforced by poly-L-lactic acid/hydroxyapatite nanocomposite coatings forbone regeneration, Biochem. Eng. J., 98, 29, 10.1016/j.bej.2015.02.026
Ogden, 2014, Dimensional accuracy of 3D printed vertebra, SPIE Med. Imaging Int. Soc. Opt. Photon, 9036, 29
Pierce, 2011, Demonstrating the influence of water on shape-memory polymer networks based on poly[(rac-lactide)-co-glycolide] segments in vitro, Int. J. Artif. Organs, 34, 172, 10.5301/IJAO.2011.6413
Persson, 2014, Effect of bioactive extruded PLA/HA composite films on focal adhesion formation of preosteoblastic cells, Coll. Surf. B: Biointerfaces, 121, 409, 10.1016/j.colsurfb.2014.06.029
Pluta, 2006, Plasticized polylactide/clay nanocomposites. I. The role of filler content and its surface organo-modification on the physico-chemical properties, J. Polym. Sci. Part B Polym. Phys., 44, 299, 10.1002/polb.20694
Ray, 2003, New polylactide/layered silicate nanocomposites. 5. Designing of materials with desired properties, Polymer, 44, 6633, 10.1016/j.polymer.2003.08.021
Sadat-Shojai, 2013, Nano-hydroxyapatite reinforced polyhydroxybutyrate composites: a comprehensive study on the structural and in vitro biological properties, Mater. Sci. Eng.: C., 33, 2776, 10.1016/j.msec.2013.02.041
Shaffer, 2014, On reducing anisotropy in 3D printed polymers via ionizing radiation, Polymer, 55, 5969, 10.1016/j.polymer.2014.07.054
Song, 2015, Design and characterization of biocompatible shape memory polymer (SMP) blend foams with a dynamic porous structure, Polymer, 56, 82, 10.1016/j.polymer.2014.09.062
Sim, 2010, Dynamic mechanical and thermal properties of red algae fiber reinforced poly(lactic acid) biocomposites, Macromol. Res., 18, 489, 10.1007/s13233-010-0503-3
Suksut, 2011, Effect of nucleating agents on physical properties of poly(lactic acid) and its blend with natural rubber, J. Polym. Environ., 19, 288, 10.1007/s10924-010-0278-9
Senatov, 2014, Fractographic analysis of composites based on ultra high molecular weight polyethylene, Composites, Part B, 869, 10.1016/j.compositesb.2013.08.083
Senatov, 2014, Microstructure and properties of composite materials based on UHMWPE after mechanical activation, J. Alloy. Compd., 615, s573, 10.1016/j.jallcom.2013.12.175
Scatto, 2013, Plasticized and nanofilled poly(lactic acid)-based cast films: effect of plasticizer and organoclay on processability and final properties, J. Appl. Polym. Sci., 127, 4947, 10.1002/app.38042
Tirkkonen, 2013, Osteogenic medium is superior to growth factors in differentiation of human adipose stem cells towards bone-forming cells in 3D culture, Eur. Cells Mater., 25, 144, 10.22203/eCM.v025a10
Tarafder, 2013, Microwave sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering, J. Tissue Eng. Regen. Med., 7, 631, 10.1002/term.555
Tabi, 2010, Crystalline structure of annealed polylactic acid and its relation to processing, eXPRESS Polym. Lett., 4, 659, 10.3144/expresspolymlett.2010.80
Wischke, 2009, Evaluation of a degradable shape- memory polymer network as matrix for controlled drug release, J. Control Release, 138, 243, 10.1016/j.jconrel.2009.05.027
Xu, J., Song J., 2015. Polylactic acid (PLA)-based shape-memory materials for biomedical applications. In: Proceedings of the Woodhead Publishing Series in Biomaterials, edited by L’Hocine Yahia, Woodhead Publishing, Shape Memory Polymers for Biomedical Applications. pp.197–217. http://dx.doi.org/10.1016/B978-0-85709-698-2.00010-6.
Xiao, 2008, Crystallization behavior of fully biodegradable poly (lactic acid)/poly (butylene adipate-co-terephthalate) blends, J. Appl. Polym. Sci., 112, 3754, 10.1002/app.29800
Yuzay, 2010, Effects of synthetic and natural zeolites on morphology and thermal degradation of poly(lactic acid) composites, Polym. Degrad. Stab., 95, 1769, 10.1016/j.polymdegradstab.2010.05.011
Yan, 2013, Polylactide-based thermoplastic shape memory polymer nanocomposites, Eur. Polym. J., 49, 366, 10.1016/j.eurpolymj.2012.09.026
Zheng, 2006, Shape memory properties of poly(D,L-lactide)/hydroxyapatite composites, Biomaterials, 27, 4288, 10.1016/j.biomaterials.2006.03.043
Zalepugin, 2007, Formation of porosity in bioresorbable polymers by their treatment in gaseous, liquid and supercritical carbon dioxide, Supercrit. Fluids: Theor. Pract., 1, 61