Mechanical design of support structure for chips embedded in a convex-deformable mobile device

Results in Materials - Tập 20 - Trang 100468 - 2023
Yoon Chang Jeong1, Kiju Kang1
1School of Mechanical Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea

Tài liệu tham khảo

Park, 2023, A novel auxetic sandwich panel for use in structural applications: fabrication and parametric study, Mater. Today Commun., 34 Jeong, 2023, A convex-deformable sandwich panel for mobile devices, J. Sandw. Struct. Mater., 25, 330, 10.1177/10996362221139573 Jeong, 2023, Mechanical design of a convex-deformable polymer plate, Materials Mater. Des., 231 Elipe, 2012, Comparative study of auxetic geometries by means of computer-aided design and engineering, Smart Mater. Struct., 21 Ashby, 2000 Fleck, 2010, Micro-architectured materials: past, present and future, Proc. R. Soc. A, 466, 2495, 10.1098/rspa.2010.0215 Gere, 1984 Lardner, 1994 Allen, 1969 Tawil, 2022, Mechanical and thermal properties of composite precast concrete sandwich panels: a review, Buildings, 12, 1429, 10.3390/buildings12091429 Palomba, 2022, Lightweight sandwich structures for marine applications: a review, Mech. Adv. Mater. Struct., 29, 4839, 10.1080/15376494.2021.1941448 Castanie, 2020, Review of composite sandwich structure in aeronautic applications, Composites Part C: Open Access, 1 Strek, 2015, Dynamic response of sandwich panels with auxetic cores, Phys. Status Solidi B, 252, 1540, 10.1002/pssb.201552024 Imbalzano, 2017, Three-dimensional modelling of auxetic sandwich panels for localised impact resistance, J. Sandw. Struct. Mater., 19, 291, 10.1177/1099636215618539 Imbalzano, 2018, Blast resistance of auxetic and honeycomb sandwich panels: comparisons and parametric designs, Compos. Struct., 183, 242, 10.1016/j.compstruct.2017.03.018 Bohara, 2023, Anti-blast and -impact performances of auxetic structures: a review of structures, materials, methods, and fabrications, Eng. Struct., 276, 10.1016/j.engstruct.2022.115377 Liu, 2016, Two-equation method for heat transfer efficiency in metal honeycombs: an analytical solution, Int. J. Heat Mass Tran., 97, 201, 10.1016/j.ijheatmasstransfer.2016.01.020 Gao, 2015, Thermal control of composite sandwich structure with lattice truss cores, J. Thermophys. Heat Tran., 29, 47, 10.2514/1.T4361 Wei, 2015, Fabrication and heat transfer characteristics of C/SiC pyramidal core lattice sandwich panel, Appl. Therm. Eng., 81, 10, 10.1016/j.applthermaleng.2015.02.012 Yan, 2015, A lightweight X-type metallic lattice in single-phase forced convection, Int. J. Heat Mass Tran., 83, 273, 10.1016/j.ijheatmasstransfer.2014.11.061 Maloney, 2012, Multifunctional heat exchangers derived from three-dimensional micro-lattice structures, Int. J. Heat Mass Tran., 55, 2486, 10.1016/j.ijheatmasstransfer.2012.01.011 Tian, 2007, Cross flow heat exchange of textile cellular metal core sandwich panels, Int. J. Heat Mass Tran., 50, 2521, 10.1016/j.ijheatmasstransfer.2006.11.042 Kang, 2015, Wire-woven cellular metals: the present and future, Prog. Mater. Sci., 69, 213, 10.1016/j.pmatsci.2014.11.003 Feng, 2012, Thermomechanical properties of brazed wire-woven bulk Kagome cellular metals for multifunctional applications, J. Thermophys. Heat Tran., 26, 66, 10.2514/1.49434 Joo, 2011, Forced convective heat transfer in all metallic wire-woven bulk Kagome sandwich panels, Int. J. Heat Mass Tran., 54, 5658, 10.1016/j.ijheatmasstransfer.2011.08.018 Ferrari, 2016, Sandwich structured ceramic matrix composites with periodic cellular ceramic cores: an active cooled thermal protection for space vehicles, Compos. Struct., 154, 61, 10.1016/j.compstruct.2016.07.043 Roberts, 2010, Structural performance of a multifunctional spacecraft structure based on plastic lithium-ion batteries, Acta Astronaut., 67, 424, 10.1016/j.actaastro.2010.03.004 Thomas, 2005, The design and application of multifunctional structure-battery materials systems, J. Mater., 57, 18 Thomas, 2012, Multifunctional structure battery composites for marine systems, J. Compos. Mater., 47, 5, 10.1177/0021998312460262 Gasco, 2013, Manufacturability of composite laminates with integrated thin film Li-ion batteries, J. Compos. Mater., 48, 899, 10.1177/0021998313480195 Galos, 2020, Multifunctional sandwich composites containing embedded lithium-ion polymer batteries under bending loads, Mater. Des., 185, 10.1016/j.matdes.2019.108228 Lu, 2001, Optimal design of a flexural actuator, J. Mech. Phys. Solid., 49, 2071, 10.1016/S0022-5096(01)00024-2 Lu, 2002, Design of a high authority flexural actuator using an electro-strictive polymer, Sens. Actuator A Phys., 99, 290, 10.1016/S0924-4247(02)00005-5 dos Santos e Lucato, 2004, Design and demonstration of a high authority shape morphing structure, Int. J. Solid Struct., 41, 3521, 10.1016/j.ijsolstr.2004.02.012 Elzey, 2005, A shape memory-based multifunctional structural actuator panel, Int. J. Solid Struct., 42, 1943, 10.1016/j.ijsolstr.2004.05.034 Teng, 2023, A stretchable sandwich panel metamaterial with auxetic rotating-square surface, Int. J. Mech. Sci., 251, 10.1016/j.ijmecsci.2023.108334 Bitzer, 1997 Deshpande, 2001, Foam topology bending versus stretching dominated architectures, Acta Mater., 49, 1035, 10.1016/S1359-6454(00)00379-7 Deshpande, 2001, Collapse of truss core sandwich beams in 3-point bending, Int. J. Solid Struct., 38, 6275, 10.1016/S0020-7683(01)00103-2 Finnegan, 2007, The compressive response of carbon fiber composite pyramidal truss sandwich cores, Int. J. Math. Res., 98, 1264, 10.3139/146.101594 2022 Hong, 2017, 9.1-inch stretchable AMOLED display based on LTPS technology, J. Soc. Inf. Disp., 25, 194, 10.1002/jsid.547 Koo, 2018, Flexible and stretchable smart display: materials, fabrication, device design, and system integration, Adv. Funct. Mater., 28, 10.1002/adfm.201801834 Newsroom, 2021