Mechanical damage to murine neuronal-enriched cultures during harvesting: Effects of free fatty acids, diglycerides, Na+, K+-ATPase, and lipid peroxidation
Tóm tắt
Từ khóa
Tài liệu tham khảo
Agardh, C-D; Chapman, A. G.; Nilsson, B.; et al. Endogenous substrates utilized by rat brain in severe insulin-induced hypoglycemia. J. Neurochem. 36:490–500; 1981.
Anderson, D. K.; Means, E. D. Lipid peroxidation in spinal cord. FeCl2 induction and protection with antioxidants. Neurochem. Pathol. 1:249–264; 1983.
Anderson, D. K.; Means, E. D.; Demediuk, P. Inhibition of ATPase activity in murine spinal cord culture by iron. Trans. Am. Soc. Neurochem. 15:130; 1984.
Atterwill, C. K., Cunningham, V. J., Balazs, R. Characterization of Na+,K+-ATPase in cultured and separated neuronal and glial cells from rat cerebellum. J. Neurochem. 43:8–18; 1984.
Banschbach, M. W.; Geison, R. L. Post-mortem increase in rat cerebral hemisphere diglyceride pool size. J. Neurochem. 23:875–877; 1974.
Boehme, D. K.; Koseckls, R.; Carson, S.; et al. Lipoperoxidation in human and rat brain tissue: Developmental and regional studies. Brain Res. 136:11–21; 1977.
Bowman, R. E.; Wolf, R. C. A rapid ultramicro method for total serum cholesterol. Clin. Chem. 8:302–309; 1962.
Chien, K. R.; Abrams, J.; Serroni, A.; et al. Accelerated phospholipid degradation and associated membrane dysfunction in irreversible, ischemic liver cell injury. J. Biol. Chem. 253:4809–4817; 1978.
Chien, K. R.; Han, A.; Sen, A.; et al. Accumulation of unesterified arachidonic acid in ischemic canine myocardium. Circ. Res. 54:313–322; 1984.
Clendenon, N. R.; Allen, N.; Gordon, W. A.; et al. Inhibition of Na+,K+-activated ATPase activity following experimental spinal cord trauma. J. Neurosurg. 49:563–568; 1978.
Demediuk, P.; Saunders, R. D.; Anderson, D. K.; et al. Membrane lipid changes in laminectomized and traumatized cat spinal cord. Proc. Natl. Acad. Sci. USA, in press.
Demopoulos, H. D.; Flamm, E. S.; Pietronigro, D. D.; et al. The free radical pathology and the microcirculation in the major central nervous system disorders. In Lewis, D. H.; Del Maestro, R., eds. Free radicals in medicine and biology. Acta Physiol. Scand [suppl.] 429:91–119; 1980.
Dorman, R. V.; Dabrowiecki, Z.; Horrocks, L. A. Effects of CDPcholine and CDPethanolamine on the alterations in rat brain lipid metabolism induced by global ischemia. J. Neurochem. 40:276–279; 1983.
Fourcans, B.; Jain, M. K. Role of phospholipids in transport and enzymatic reaction. In: Paoletti, R.; Kritchevsky, D., eds. Advances in lipid research, vol. 12. New York: Academic Press; 1974:146–166.
Goldman, S.; Albers, R. W. Sodium-potassium activated adenosine triphosphatase. IX. The role of phospholipids. J. Biol. Chem. 248:867–874; 1973.
Guthrie, P. B.; Brenneman, D. E. Mouse spinal cord in dissociated cell culture. Separate culture of dorsal and ventral harn. Neurosci. Absts. 8:233; 1982.
Hall, E. D., Braughler, J. M. Effect of intravenous methylprednisolone on spinal cord lipid peroxidation and Na+,K+-ATPase activity. Dose-response analysis during the first hour after contusion injury in the cat. J. Neurosurg. 57:247–253; 1982.
Horrocks, L. A.; Dorman, R. V.; Porcellati, G. Fatty acids and phospholipids in brain during ischemia. In: Bes, A.; Braquet, P.; Pasletti, R.; Siesjö, B. K., eds. Advances in brain ischemia research. Amsterdam: Elsevier; 1984:211–222.
Jones, M.; Keenan, R. W.; Horowitz, P. Use of 6-p-toluidino-2-naphthalene sulfonic acid to quantitate lipids after thin layer chromatography. J. Chromatog. 237:522–524; 1982.
Lowry, O. H.; Rosebrough, N. J.; Farr, A. L.; et al. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275; 1951.
Means, E. D.; Anderson, D. K.; Waters, T. R.; et al. Effect of methylprednisolone in compression trauma to the feline spinal cord. J. Neurosurg. 55:200–209; 1981.
Muszbek, L.; Szabo, T.; Fesus, L. A highly sensitive method for the measurement of ATPase activity. Anal. Biochem. 77:286–288; 1977.
Osterholm, J. L. The pathophysiological response to spinal cord injury. The current status of related research. J. Neurosurg. 40:5–33; 1974.
Ranson, B.R.; Neale, E.; Henkart, M.; et al. Mouse spinal cord in cell culture. I. Morphology and intrinsic neuronal electrophysiological properties. J. Neurophsyiol. 40:1132–1150; 1977.
Rehncrona, S.; Smith, D. S.; Akesson, B.; et al. Peroxidative changes in brain cortical fatty acids and phospholipids, as characterized during Fe2+ and ascorbic acid-stimulated lipid peroxidationin vitro. J. Neurochem. 34:1630–1638; 1980.
Rouser, G.; Siakotos, V.; Fleischer, S. Quantitative analysis of phospholipids by thin layer chromatography and phosphorus analysis of spots. Lipids 1:85–86; 1969.
Seligman, M. L.; Flamm, E. S.; Goldstein, B. D.; et al. Spectrofluorescent detection of malonaldehyde as a measure of lipid free radical damage in response to ethanol potentiation of spinal cord trauma. Lipids 12:945–950; 1977.
Wheeler, K. P.; Walker, J. A.; Barker, D. M. Lipid requirement of the membrane sodium-plus-potassium ion-dependent adenosine triphosphatase system. Biochem. J. 146:713–722; 1975.