Mechanical behavior of nanorubber reinforced epoxy over a wide strain rate loading
Nano Materials Science - 2023
Tài liệu tham khảo
Vázquez, 1995, Reactive blends of thermoplastics and latex particles, Polym. Adv. Technol., 6, 309, 10.1002/pat.1995.220060509
Yao, 2016, Properties and unique morphological evolution of dynamically vulcanized bromo-isobutylene-isoprene rubber/polypropylene thermoplastic elastomer, RSC Adv., 6, 11151, 10.1039/C5RA26171F
Yu, 1999, The role of interfacial modifier in toughening of nylon 6 with a core-shell toughener, J. Polym. Sci., Part B: Polym. Phys., 37, 2664, 10.1002/(SICI)1099-0488(19990915)37:18<2664::AID-POLB10>3.0.CO;2-O
Fang, 2013, Synthesis of poly(butyl acrylate)-laponite nanocomposite nanoparticles for improving the impact strength of poly(lactic acid), J. Appl. Polym. Sci., 129, 2580, 10.1002/app.38968
Liu, 2011, On fracture toughness of nano-particle modified epoxy, Compos. B Eng., 42, 2170, 10.1016/j.compositesb.2011.05.014
Gong, 2015, Balanced electrical, thermal and mechanical properties of epoxy composites filled with chemically reduced graphene oxide and rubber nanoparticles, Compos. Sci. Technol., 121, 104, 10.1016/j.compscitech.2015.10.023
Fu, 2008, Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites, Compos. B Eng., 39, 933, 10.1016/j.compositesb.2008.01.002
Ren, 2017, Critical rubber layer thickness of core-shell particles with a rigid core and a soft shell for toughening of epoxy resins without loss of elastic modulus and strength, Compos. Sci. Technol., 153, 253, 10.1016/j.compscitech.2017.10.027
Tang, 2013, Interlaminar fracture toughness and CAI strength of fibre-reinforced composites with nanoparticles-A review, Compos. Sci. Technol., 86, 26, 10.1016/j.compscitech.2013.06.021
Arruda, 1995, Effects of strain rate, temperature and thermomechanical coupling on the finite strain deformation of glassy polymers, Mech. Mater., 19, 193, 10.1016/0167-6636(94)00034-E
Miao, 2022, Characterizing multi mechanical behaviors for epoxy-like materials under wide strain rate range, Polym. Test., 116, 10.1016/j.polymertesting.2022.107804
Fu, 2019, Some basic aspects of polymer nanocomposites: a critical review, Nano Mater. Sci., 1, 2, 10.1016/j.nanoms.2019.02.006
Meng, 2022, Dynamic shear failure behavior of the interfaces in carbon fiber/ZnO nanowire/epoxy resin hierarchical composites, Compos. Sci. Technol., 221, 10.1016/j.compscitech.2022.109284
Zhu, 2022, Fracture behavior of hybrid epoxy nanocomposites based on multi-walled carbon nanotube and core-shell rubber, Nano Mater. Sci., 4, 251, 10.1016/j.nanoms.2021.07.006
Guo, 2007, Quasi-static/dynamic response of SiO2-epoxy nanocomposites, Mater. Sci. Eng., 458, 330, 10.1016/j.msea.2007.02.011
Miao, 2016, Effects of strain rate on mechanical properties of nanosilica/epoxy, Compos. B Eng., 96, 119, 10.1016/j.compositesb.2016.04.008
Kolsky, 1949, An investigation of the mechanical properties of materials at very high rates of loading, Proc. R. Soc. Ser. B, 62, 676, 10.1088/0370-1301/62/11/302
Miao, 2016, Determination of dynamic elastic modulus of polymeric materials using vertical split Hopkinson pressure bar, Int. J. Mech. Sci., 108–109, 188, 10.1016/j.ijmecsci.2016.02.005
Han, 2022, Coupling effect of hydrogen and strain rate on 2.25Cr1Mo0.25V steel deformed over wide strain rate ranges, Int. J. Hydrogen Energy
Miao, 2018, On loading ceramic-like materials using split Hopkinson pressure bar, Acta Mech., 229, 3437, 10.1007/s00707-018-2166-7
Xu, 2019, Determination of shear behavior and constitutive modeling of the 603 steel over wide temperature and strain rate ranges, J. Mech. Phys. Solid., 129, 184, 10.1016/j.jmps.2019.05.005
Wang, 2004, Strain hardening, strain rate sensitivity, and ductility of nanostructured metals, Mater. Sci. Eng., A, 375–377, 46, 10.1016/j.msea.2003.10.214
Mayer, 2016
Miao, 2019, Mechanical behaviors and equivalent configuration of a polyurea under wide strain rate range, Compos. Struct., 222, 10.1016/j.compstruct.2019.110923
Rittel, 1999, On the conversion of plastic work to heat during high strain rate deformation of glassy polymers, Mech. Mater., 31, 131, 10.1016/S0167-6636(98)00063-5
Li, 1998, Influence of particle volume fraction, shape, and aspect ratio on the behavior of particle-reinforced metal-matrix composites at high rates of strain, Acta Mater., 46, 5633, 10.1016/S1359-6454(98)00250-X
Shabana, 2013, Thermomechanical modeling of polymer nanocomposites by the asymptotic homogenization method, Acta Mech., 224, 1213, 10.1007/s00707-013-0868-4
Shams, 2017, A micromechanical model to study failure of polymer-glass syntactic foams at high strain rates, Comput. Mater. Sci., 135, 189, 10.1016/j.commatsci.2017.04.007
Miao, 2020, Strain hardening behaviors and mechanisms of polyurethane under various strain rate loading, Polym. Eng. Sci., 60, 1083, 10.1002/pen.25364
Dodd, 2012
Guo, 2019, Temperature rise associated with adiabatic shear band: causality clarified, Phys. Rev. Lett., 122, 10.1103/PhysRevLett.122.015503
Qin, 2022, Formation of adiabatic shearing band for high-strength Ti-5553 alloy: a dramatic thermoplastic microstructural evolution, Defence Tech., 10.1016/j.dt.2022.06.010
Yu, 2000, Impact fracture morphology of nylon 6 toughened with a maleated polyethylene-octene elastomer, J. Appl. Polym. Sci., 76, 1285, 10.1002/(SICI)1097-4628(20000523)76:8<1285::AID-APP9>3.0.CO;2-U