Mechanical behavior of nanorubber reinforced epoxy over a wide strain rate loading

Yinggang Miao1,2,3, Jianping Yin1,3, Wenxuan Du1,3, Lianyang Chen1,3
1Joint International Research Laboratory of Impact Dynamics and Its Engineering Applications, School of Aeronautics, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
2State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xian, Shaanxi, 710049, China
3Shaanxi Key Laboratory of Impact Dynamics and its Engineering Application, School of Aeronautics, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China

Tài liệu tham khảo

Vázquez, 1995, Reactive blends of thermoplastics and latex particles, Polym. Adv. Technol., 6, 309, 10.1002/pat.1995.220060509 Yao, 2016, Properties and unique morphological evolution of dynamically vulcanized bromo-isobutylene-isoprene rubber/polypropylene thermoplastic elastomer, RSC Adv., 6, 11151, 10.1039/C5RA26171F Yu, 1999, The role of interfacial modifier in toughening of nylon 6 with a core-shell toughener, J. Polym. Sci., Part B: Polym. Phys., 37, 2664, 10.1002/(SICI)1099-0488(19990915)37:18<2664::AID-POLB10>3.0.CO;2-O Fang, 2013, Synthesis of poly(butyl acrylate)-laponite nanocomposite nanoparticles for improving the impact strength of poly(lactic acid), J. Appl. Polym. Sci., 129, 2580, 10.1002/app.38968 Liu, 2011, On fracture toughness of nano-particle modified epoxy, Compos. B Eng., 42, 2170, 10.1016/j.compositesb.2011.05.014 Gong, 2015, Balanced electrical, thermal and mechanical properties of epoxy composites filled with chemically reduced graphene oxide and rubber nanoparticles, Compos. Sci. Technol., 121, 104, 10.1016/j.compscitech.2015.10.023 Fu, 2008, Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites, Compos. B Eng., 39, 933, 10.1016/j.compositesb.2008.01.002 Ren, 2017, Critical rubber layer thickness of core-shell particles with a rigid core and a soft shell for toughening of epoxy resins without loss of elastic modulus and strength, Compos. Sci. Technol., 153, 253, 10.1016/j.compscitech.2017.10.027 Tang, 2013, Interlaminar fracture toughness and CAI strength of fibre-reinforced composites with nanoparticles-A review, Compos. Sci. Technol., 86, 26, 10.1016/j.compscitech.2013.06.021 Arruda, 1995, Effects of strain rate, temperature and thermomechanical coupling on the finite strain deformation of glassy polymers, Mech. Mater., 19, 193, 10.1016/0167-6636(94)00034-E Miao, 2022, Characterizing multi mechanical behaviors for epoxy-like materials under wide strain rate range, Polym. Test., 116, 10.1016/j.polymertesting.2022.107804 Fu, 2019, Some basic aspects of polymer nanocomposites: a critical review, Nano Mater. Sci., 1, 2, 10.1016/j.nanoms.2019.02.006 Meng, 2022, Dynamic shear failure behavior of the interfaces in carbon fiber/ZnO nanowire/epoxy resin hierarchical composites, Compos. Sci. Technol., 221, 10.1016/j.compscitech.2022.109284 Zhu, 2022, Fracture behavior of hybrid epoxy nanocomposites based on multi-walled carbon nanotube and core-shell rubber, Nano Mater. Sci., 4, 251, 10.1016/j.nanoms.2021.07.006 Guo, 2007, Quasi-static/dynamic response of SiO2-epoxy nanocomposites, Mater. Sci. Eng., 458, 330, 10.1016/j.msea.2007.02.011 Miao, 2016, Effects of strain rate on mechanical properties of nanosilica/epoxy, Compos. B Eng., 96, 119, 10.1016/j.compositesb.2016.04.008 Kolsky, 1949, An investigation of the mechanical properties of materials at very high rates of loading, Proc. R. Soc. Ser. B, 62, 676, 10.1088/0370-1301/62/11/302 Miao, 2016, Determination of dynamic elastic modulus of polymeric materials using vertical split Hopkinson pressure bar, Int. J. Mech. Sci., 108–109, 188, 10.1016/j.ijmecsci.2016.02.005 Han, 2022, Coupling effect of hydrogen and strain rate on 2.25Cr1Mo0.25V steel deformed over wide strain rate ranges, Int. J. Hydrogen Energy Miao, 2018, On loading ceramic-like materials using split Hopkinson pressure bar, Acta Mech., 229, 3437, 10.1007/s00707-018-2166-7 Xu, 2019, Determination of shear behavior and constitutive modeling of the 603 steel over wide temperature and strain rate ranges, J. Mech. Phys. Solid., 129, 184, 10.1016/j.jmps.2019.05.005 Wang, 2004, Strain hardening, strain rate sensitivity, and ductility of nanostructured metals, Mater. Sci. Eng., A, 375–377, 46, 10.1016/j.msea.2003.10.214 Mayer, 2016 Miao, 2019, Mechanical behaviors and equivalent configuration of a polyurea under wide strain rate range, Compos. Struct., 222, 10.1016/j.compstruct.2019.110923 Rittel, 1999, On the conversion of plastic work to heat during high strain rate deformation of glassy polymers, Mech. Mater., 31, 131, 10.1016/S0167-6636(98)00063-5 Li, 1998, Influence of particle volume fraction, shape, and aspect ratio on the behavior of particle-reinforced metal-matrix composites at high rates of strain, Acta Mater., 46, 5633, 10.1016/S1359-6454(98)00250-X Shabana, 2013, Thermomechanical modeling of polymer nanocomposites by the asymptotic homogenization method, Acta Mech., 224, 1213, 10.1007/s00707-013-0868-4 Shams, 2017, A micromechanical model to study failure of polymer-glass syntactic foams at high strain rates, Comput. Mater. Sci., 135, 189, 10.1016/j.commatsci.2017.04.007 Miao, 2020, Strain hardening behaviors and mechanisms of polyurethane under various strain rate loading, Polym. Eng. Sci., 60, 1083, 10.1002/pen.25364 Dodd, 2012 Guo, 2019, Temperature rise associated with adiabatic shear band: causality clarified, Phys. Rev. Lett., 122, 10.1103/PhysRevLett.122.015503 Qin, 2022, Formation of adiabatic shearing band for high-strength Ti-5553 alloy: a dramatic thermoplastic microstructural evolution, Defence Tech., 10.1016/j.dt.2022.06.010 Yu, 2000, Impact fracture morphology of nylon 6 toughened with a maleated polyethylene-octene elastomer, J. Appl. Polym. Sci., 76, 1285, 10.1002/(SICI)1097-4628(20000523)76:8<1285::AID-APP9>3.0.CO;2-U