Mechanical and microstructural properties of recycled reactive powder concrete containing waste glass powder and fly ash at standard curing

Cogent Engineering - Tập 5 Số 1 - Trang 1464877 - 2018
Belachew Asteray Demiss1,2, Walter O. Oyawa3, Stanley Muse Shitote4
1Civil Engineering Department, Pan African University Institute for Basic Science, Technology and Innovation Hosted at Jomo Kenyatta University of Agriculture and Technology , P.O. Box 62000-00200, Nairobi, Kenya
2Department of Construction Technology and Management, Addis Ababa Science and Technology University , P.O. Box 16417, Addis Ababa, Ethiopia
3Administration and Finance, Commission for University Education , Nairobi, Kenya
4Civil and Structural Engineering Department, Moi University , Eldoret, Kenya

Tóm tắt

Từ khóa


Tài liệu tham khảo

ACI Committee 544 . (1988). Design considerations for steel fiber reinforced concrete: Manual of concrete practice (Vol. 88). Retrieved from http://www.concrete.org/Publications/InternationalConcreteAbstractsPortal.aspx?m=details&i=3144

10.1016/j.conbuildmat.2015.09.010

10.2749/101686698780489243

Ali, S. T. , El-Dieb, A. S. , Aboubakr, S. H. , & Taha, M. M. R. (2016). Utilization of ceramic waste powder in self-compacting concrete. In Fourth international conference on sustainable construction materials and technologies SCMT4 . Las Vegas . Retrieved from http://www.claisse.info/Proceedings.htm

10.1016/S1006-1266(08)60059-0

10.1016/j.ceramint.2016.05.205

Anwar A., 2015, International Journal of Civil Engineering and Technology, 6, 79

10.1155/2015/950567

10.5923/j.jce.20170704.03

10.1016/S0013-7944(02)00153-4

BS 5328: Part 1, 1997, British standard for concrete -guide to specifying concrete

BS EN 1008 . (2002). British standard for mixing water for concrete. Specification for sampling, testing and assessing the suitability of water, including water recovered from processes in the concrete industry, as mixing water for concrete (Vol. 3). London: British Standard Institution. Retrieved from http://shop.bsigroup.com/en/ProductDetail/?pid=000000000019990036

BS EN 12390-1, 2000, British standard for testing hardened concrete – Part 1: Shape, dimensions and other requirements for specimens and moulds

BS EN 12390-2, 2000, British standard for testing hardened concrete – Part 2: Making and curing specimens for strength tests

BS EN 12390-3, 2002, British standard for testing hardened concrete – Part 3: Compressive strength of test specimens

BS EN 12390-4, 2000, British standard for testing hardened concrete – Part 4: Compression strength- Specification of test machines

BS En 12390-5, 2000, British standard for testing hardened concrete - part 5: Flexural strength of test specimens

BS EN 12390-6, 2000, British standard for testing hardened concrete Part 6: Tensile splitting strength of test specimens

BS812-103.1, 1995, British standard for testing aggregates – Part 103: Methods for determination of particle size distribution – Section 103.1 Sieve tests

10.1016/j.conbuildmat.2014.07.097

10.1016/j.cemconres.2003.12.023

10.1016/0008-8846(95)00143-Z

10.1016/j.cemconres.2008.03.013

10.1016/0958-9465(95)00036-4

10.1016/j.conbuildmat.2015.10.066

10.1007/s11431-015-5769-4

10.5897/IJPS11.023

Hasan, M. M. , & Kabir, A. (2011). Prediction of compressive strength of concrete from early age test result. In 4th Annual Paper Meet and 1st Civil Engineering Congress (pp. 978–984). Retrieved from www.iebconferences.info

10.1016/j.ijsbe.2013.05.001

10.1016/j.conbuildmat.2011.08.060

Khan, A. G. , & Khan, B. (2017). Effect of partial replacement of cement by mixture of glass powder and silica fume upon concrete strength. International Journal of Engineering Works , 4(7), 124–135. Retrieved from www.kwpublisher.com

10.1016/j.proeng.2015.11.082

10.1007/s40069-014-0078-z

Ling I. H., 2013, Jordan Journal of Civil Engineering, 7, 361

10.1016/j.conbuildmat.2008.08.022

10.1680/jadcr.15.00058

E. Matthews , C. Amann , S. Bringezu , M. Fischer-Kowalski , W. Hüttler , R. Kleijn , … H. Weisz (2000). The weight of nations: Material outflows from industrial economies . ( C. Hutter , Ed.). Washington, DC: World Resources Institute. Retrieved from http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:THE+WEIGHT+OF+NATIONS+MATERIAL+OUTFLOWS+FROM+INDUSTRIAL+ECONOMIES#5

10.1016/S0008-8846(02)00893-1

10.1080/19648189.2012.681961

10.1007/978-3-642-16657-0

10.1016/j.conbuildmat.2016.02.006

10.1016/j.conbuildmat.2005.01.054

Pantazopoulou S. J., 1995, ACI Materials Journal, 92, 605

10.1016/j.ijsbe.2016.06.003

10.5703/1288284315748

10.1016/0008-8846(95)00144-2

10.1080/14488353.2005.11463913

10.1016/j.conbuildmat.2013.05.023

Sawant V. P., 2016, International Journal for Research in Technological Studies, 3, 10

10.1016/j.proeng.2013.04.127

10.1007/s12205-015-0015-y

10.1016/j.nucengdes.2011.04.008

10.1016/j.jascer.2016.01.007

Vasudevan, G. , Ganis, S. , & Pillay, K. (2013). Performance of using waste glass powder in concrete as replacement of cement. American Journal of Engineering Research , 2(12), 2320–2847. Retrieved from www.ajer.org

10.1007/s10098-012-0481-6

10.1016/j.conbuildmat.2011.09.014

10.1016/j.compositesb.2012.07.042

10.1617/s11527-014-0341-4

10.1999.3/9997569