Mechanical and functional properties of commercial alloy TN-1 semiproducts fabricated by warm rotary forging and ECAP
Tóm tắt
Từ khóa
Tài liệu tham khảo
S. A. Muslov, V. A. Andreev, A. B. Bondarev, and P. Yu. Sukhochev, Superelastic Shape Memory Alloys in Science, Engineering, and Medicine (ID Folium, Moscow, 2010).
V. E. Gunter, V. N. Khodorenko, Yu.F. Yasenchuk, T. L. Chekalkin, et al., Titanium Nickelide. Next-Generation Medicine Material (MITs, Tomsk, 2006).
V. Brailovski, S. Prokoshkin, P. Terriault, and F. Trochu, Shape Memory Alloys: Fundamentals, Modeling and Applications (ETS Publ., Montreal, 2003).
Shape Memory Alloys: Properties, Technologies, Opportunities, Ed. by N. Resnina and V. Rubanik (Trans. Tech. Publications Inc., Zurich, 2015), Vol. 81–82.
S. D. Prokoshkin, V. Brailovskii, I. Yu. Khmelevskaya, S. V. Dobatkin, K. E. Inaekyan, V. Yu. Turilina, V. Demers, and E. V. Tat’yanin, “Creation of substructure and nanostructure during thermomechanical treatment and control of the functional properties of Ti–Ni shape memory alloys,” Metalloved. Term. Obrab. Met., No. 5, 24–29 (2005).
V. Brailovski, S. Prokoshkin, I. Khmelevskaya, K. Inaekyan, V. Demers, S. Dobatkin, and E. Tatyanin, “Structure and properties of the Ti–50.0% Ni alloy after strain hardening and nanocrystallizing thermomechanical processing,” Mater. Trans. 47, 795–804 (2006).
R. Z. Valiev and I. V. Aleksandrov, in Nanostructured Materials Produced by Severe Plastic Deformation (Logos, Tsentr Integratsiya, 2000), pp. 10–19.
S. D. Prokoshkin, V. Brailovskii, I. Yu. Khmelevskaya, S. V. Dobatkin, K. E. Inaekyan, V. Demers, and E. V. Tat’yanin, “Formation of a nanocrystalline structure during severe plastic deformation by rolling and annealing and an increase in the functional properties of Ti–Ni alloys,” Izv. Ross. Akad. Nauk, Ser. Fiz. 70 (9), 1344–1348 (2006).
S. D. Prokoshkin, V. Brailovskii, A. V. Korotitskii, K. E. Inaekyan, and A. M. Glezer, “Specific features of the formation of the microstructure of titanium nickelide upon thermomechanical treatment including cold plastic deformation to degrees from moderate to severe,” Phys. Met. Metallogr. 110 (3), 289–302 (2010).
I. Yu. Khmelevskaya, S. D. Prokoshkin, I. B. Trubitsyna, M. N. Belousov, S. V. Dobatkin, E. V. Tatyanin, A. V. Korotitskiy, V. Brailovski, V. V. Stolyarov, and E. A. Prokofiev, “Structure and properties of Ti–Ni–based alloys after equal-channel angular pressing and high-pressure torsion,” Mater. Sci. Eng. A 481–482, 119–122 (2008).
V. V. Stolyarov, E. A. Prokofiev, S. D. Prokoshkin, S. V. Dobatkin, I. B. Trubitsyna, I. Yu. Khmelevskaya, V. G. Pushin, and R. Z. Valiev, “Structural features, mechanical properties and shape memory effect in TiNi alloys after equal channel angular pressing,” Phys. Met. Metallogr. 100, 2703–2714 (2005).
I. B. Trubitsyna, “Structure formation and functional properties of Ti–Ni alloys after severe plastic deformation,” Candidate’s Dissertation in Engineering (Moscow, 2005).
A. V. Korotitskii, “Rough estimation of the shape recovery parameters of shape memory alloys after deformation-induced bending,” in Proceedings of V Eurasian Conference on Strength of Heterogeneous Structures Prost-2010 (MISiS, Moscow, 2010), p. 182.
I. Yu. Khmelevskaya, R. D. Karelin, S. D. Prokoshkin, V. A. Andreev, V. S. Yusupov, M. M. Perkas, V. V. Prosvirnin, A. E. Shelest, and V. S. Komarov, “Effect of the quasi-continuous equal-channel angular pressing on the structure and functional properties of Ti–Nibased shape-memory alloys,” Phys. Met. Metallogr. 118 (3), 279–287 (2017).
V. A. Likhachev, S. L. Kuz’min, and Z. P. Kamentseva, Shape Memory Effect (Izd. LGU, Leningrad, 1987).