Mechanical Stability Determines Stress Fiber and Focal Adhesion Orientation

Springer Science and Business Media LLC - Tập 2 - Trang 475-485 - 2009
Dimitrije Stamenović1, Konstantinos A. Lazopoulos2, Athanassios Pirentis2, Béla Suki1
1Department of Biomedical Engineering, Boston University, Boston, USA
2Department of Mechanics, Faculty of Applied Mathematical and Physical Sciences, National Technical University of Athens, Athens, Greece

Tóm tắt

It is well documented in a variety of adherent cell types that in response to anisotropic signals from the microenvironment cells alter their cytoskeletal organization. Previous theoretical studies of these phenomena were focused primarily on the elasticity of cytoskeletal actin stress fibers (SFs) and of the substrate while the contribution of focal adhesions (FAs) through which the cytoskeleton is linked to the external environment has not been considered. Here we propose a mathematical model comprised of a single linearly elastic SF and two identical linearly elastic FAs of a finite size at the endpoints of the SF to investigate cytoskeletal realignment in response to uniaxial stretching of the substrate. The model also includes the contribution of the chemical potential energies of the SF and the FAs to the total potential energy of the SF–FA assembly. Using the global (Maxwell’s) stability criterion, we predict stable configurations of the SF–FA assembly in response to substrate stretching. Model predictions obtained for physiologically feasible values of model parameters are consistent with experimental data from the literature. The model shows that elasticity of SFs alone can not predict their realignment during substrate stretching and that geometrical and elastic properties of SFs and FAs need to be included.

Tài liệu tham khảo

Balaban, N. Q., U. S. Schwarz, D. Riveline, P. Goichberg, G. Tzur, I. Sabanay, D. Mahalu, S. Safran, A. Bershadsky, L. Addadi, and B. Geiger. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat. Cell Biol. 3:466–472, 2001. Bausch, A. R., F. Ziemann, A. A. Boulbitch, K. Jacobson, and E. Sackmann. Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead rheometry. Biophys. J. 75:2038–2049, 1998. Costa, K. D., W. J. Hucker, and F. C.-P. Yin. Buckling of actin stress fibers: a new wrinkle in the cytoskeletal tapestry. Cell Motil. Cytoskeleton 52:266–274, 2002. Dartsch, P. C., and H. Hämmerle. Orientation response of arterial smooth muscle cells to mechanical stimulation. Eur. J. Cell Biol. 41:339–346, 1986. De, R., A. Zemel, and S. A. Safran. Dynamics of cell orientation. Nat. Phys. 3:655–659, 2007. Deguchi, S., S. Ohashi, and M. Sato. Tensile properties of single stress fibers isolated from cultured vascular smooth muscle cells. J. Biomech. 39:2603–2610, 2006. Ericksen, J. L. Introduction to the Thermodynamics of Solids, Chapter 3, edited by R. J. Knops, and K. W. Morton. London: Chapman & Hall. pp. 39–61. Franz, C. M., and D. J. Müller. Analyzing focal adhesion structure by atomic force microscopy. J. Cell Sci. 118:5315–5323, 2005. Friedl, P., and E.-B. Bröcker. The biology of cell locomotion within three-dimensional extracellular matrix. Cell. Mol. Life Sci. 57:41–64, 2000. Grinnell, F., C.-H. Ho, E. Tamariz, D. J. Lee, and G. Skuta. Dendritic fibroblasts in three-dimensional collagen matrix. Mol. Biol. Cell 14:384–395, 2003. Hayakawa, K., N. Sato, and T. Obinata. Dynamic reorientation of cultured cells and stress fibers under mechanical stress from periodic stretching. Exp. Cell Res. 268:104–114, 2001. Hill, T. L. Microfilament or microtubule assembly or disassembly against a force. Proc. Natl Acad. Sci. USA 78:5613–5617, 1981. Hsu, H.-J., C.-F. Lee, and R. Kaunas. A dynamic stochastic model of frequency-dependent stress fiber alignment induced by cyclic stretch. PLoS One 4:e4853, 2009. Iba, T., and B. E. Sumpio. Morphological response of human endothelial cells subjected to cyclic strain in vitro. Microvasc. Res. 42:245–254, 1991. Kaunas, R., P. Nguyen, S. Usami, and S. Chien. Cooperative effects of Rho and mechanical stretch on stress fiber organization. Proc. Natl Acad. Sci. USA 102:15895–15900, 2005. Kaverina, I., O. Krylyshkina, K. Beningo, K. Anderson, Y.-L. Wang, and J. V. Small. Tensile stress stimulates microtubule outgrowth in living cells. J. Cell Sci. 115:2283–2291, 2002. Kumar, S., I. Z. Maxwell, A. Heisterkamp, T. R. Polte, T. P. Lele, M. Salanga, E. Mazur, and D. E. Ingber. Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophys. J. 90:3762–3773, 2006. Kurpinski, K., J. Chu, C. Hashi, and S. Li. Anisotropic mechanosensing by mesenchymal stem cells. Proc. Natl Acad. Sci. USA 103:16095–16100, 2006. Lazopoulos, K. A., and A. Pirentis. Substrate stretching and reorganization of stress fibers as a finite elasticity problem. Int. J. Solids Struct. 44:8285–8296, 2007. Lazopoulos, K. A., and D. Stamenović. Durotaxis as an elastic stability phenomenon. J. Biomech. 41:1289–1294, 2008. Lu, L., Y. Feng, W. J. Hucker, S. J. Oswald, G. D. Longmore, and F. C.-P. Yin. Actin stress fiber pre-extension in human aortic endothelial cells. Cell Motil. Cytoskeleton 65:281–294, 2008. Neidlinger-Wilke, C., E. S. Grood, J. H.-C. Wang, R. A. Brand, and L. Claes. Cell alignment is induced by cyclic changes in cell length: studies of cells grown in cyclically stretched substrates. J. Orthop. Res. 19:286–293, 2001. Overby, D. R., B. D. Matthews, E. Alsberg, and D. E. Ingber. Novel dynamic rheological behavior of individual focal adhesions measured within single cells using electromagnetic pulling cytometry. Acta Biomater. 1:295–303, 2005. Shemesh, T., B. Geiger, A. D. Bershadsky, and M. M. Kozlov. Focal adhesions as mechanosensors: a physical mechanism. Proc. Natl Acad. Sci. USA 102:12383–12388, 2005. Sipkema, P., P. J. W. van der Linden, N. Westerhof, and F. C.-P. Yin. Effect of cyclic axial stretch of rat arteries on endothelial cytoskeletal morphology and vascular reactivity. J. Biomech. 36:653–659, 2003. Smith, P. G., R. Garcia, and L. Kogerman. Mechanical strain increases protein tyrosine phosphorylation in airway smooth muscle cells. Exp. Cell Res. 239:353–360, 1998. Stamenović, D., and D. E. Ingber. Tensegrity-guided self assembly: from molecules to living cells. Soft Matter 5:1137–1145, 2009. Takemasa, T., K. Sugimoto, and K. Yamashita. Amplitude-dependent stress fiber reorientation in early response to cyclic strain. Exp. Cell Res. 230:407–410, 1997. Wang, J. H.-C. Substrate deformation determines actin cytoskeleton reorganization: mathematical modeling and experimental study. J. Theor. Biol. 202:33–41, 2000. Wang, J. H.-C., P. Goldschmidt-Clermont, J. Wille, and F. C.-P. Yin. Specificity of endothelial cell reorientation in response to cyclic mechanical stretching. J. Biomech. 34:1563–1572, 2001. Wang, J. H.-C., P. Goldschmidt-Clermont, and F. C.-P. Yin. Contractility affects stress fiber remodeling and reorientation of endothelial cells subjected to cyclic mechanical stretching. Ann. Biomed. Eng. 28:1165–1171, 2000. Wei, Z., V. S. Deshpande, R. M. McMeeking, and A. G. Evans. Analysis and interpretation of stress fiber organization in cells subjected to cyclic stretching. ASME J. Biomech. Eng. 130:031009, 2008. Wille, J. J., C. A. Ambrosi, and F. C.-P. Yin. Comparison of the effects of cyclic stretching and compression on endothelial cell morphological responses. ASME J. Biomech. Eng. 126:545–551, 2004. Yoshigi, M., L. M. Hoffman, C. C. Jensen, H. J. Yost, and M. C. Beckerle. Mechanical force mobilizes zyxin from focal adhesions to actin filaments and regulates cytoskeletal reinforcement. J. Cell Biol. 171:209–215, 2005.